为了探究膨胀土吸湿过程土-水特征曲线与微观结构变化的关系,采用渗析法和气相法对南阳原状膨胀土的持水特性进行研究,获得了土样在全吸力(0.01~309 MPa)范围内的土-水特征曲线。利用Van Genuchten模型对试验结果进行拟合;采用扫描电镜试验和压汞试验测定吸湿过程中土样微观结构的变化,从微观的层面对膨胀土土-水特征曲线的趋势进行分析。研究表明:在吸湿过程中,膨胀土的微孔隙和大孔隙体积含量增多,小孔隙体积含量减少;吸湿过程中小孔隙和微孔隙体积含量的动态变化使得膨胀土表现出在土-水特征曲线没有拐点的情况下持续增湿的特性;大孔隙体积含量的变化只影响土-水特征曲线的边界效应段,但是影响较小。
Abstract
The water retention characteristics of Nanyang undisturbed weak expansive soil were tested using the osmotic technique and the vapor phase technique. The hydrating path of soil-water characteristic curve (SWCC) in the suction ranging from 0.01 to 309 MPa was gained and fitted according to a model proposed by Van Genuchten. Scanning Eelectron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP) tests were conducted to analyse the influence of microstructure modification on SWCC. Results showed that during hydrating process, the volume content of micro-pore and macro-pore increased while that of fine-pore decreased. Changes in micro-pore and fine-pore resulted in the continuous absorption of water by soils with no inflection point on the SWCC. The increase of macro-pore mainly influences the boundary effect segment of SWCC, but such influence is slight.
关键词
膨胀土 /
持水特征 /
微观结构 /
孔隙分布 /
吸湿路径 /
土-水特征曲线
Key words
expansive soil /
water retention characteristics /
microstructure /
pore size distribution /
hydrating path /
SWCC
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FREDLUND D G, XING A, FREDLUND M D, et al. The Relationship of the Unsaturated Soil Shear to the Soil-water Characteristic Curve.. Canadian Geotechnical Journal, 1996, 33(3):440-448.
[2] FREDLUND D G, XING A, HUANG S. Predicting the Permeability Function for Unsaturated Soils Using the Soil-water Characteristic Curve. Canadian Geotechnical Journal, 1994, 31(4):159A.
[3] 孔令伟, 李雄威, 郭爱国,等. 干燥速率影响下的膨胀土工程性状与持水特征初探. 岩土工程学报, 2009, 31(3):335-340.
[4] 汪东林, 栾茂田, 杨庆. 重塑非饱和黏土的土-水特征曲线及其影响因素研究. 岩土力学, 2009, 30(3):751-756.
[5] 周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征. 水利学报, 2011,39(10):1152-1160.
[6] CHEN Bao,QIAN Li-xing, YE Wei-min, et al. Soil-water Characteristic Curves of GaomiaoziBentonite. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(4):788-793.
[7] ZHANG L M, LI X. Microporosity Structure of Coarse Granular Soils. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1425-1436.
[8] 程 鹏,高 抒,李徐生. 激光粒度仪测试结果及其与沉降法、筛析法的比较. 沉积学报,2001,(3):449-455.
[9] ZHANG J, SCHERER G W. Comparison of Methods for Arresting Hydration of Cement. Cement & Concrete Research, 2011, 41(10):1024-1036.
[10] VAN GENUCHTEN M T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[11] 谭晓慧, 辛志宇, 沈梦芬,等. 湿胀条件下合肥膨胀土土-水特征研究. 岩土力学, 2014, 35(12):3352-3360.
[12] 黄志全, 岳康兴, 李 幻,等. 滤纸法测定非饱和膨胀土土水特征曲线试验. 南水北调与水利科技, 2015,13(3):482-486.
[13] ZAFFAR M, LU Sheng-gao. Pore Size Distribution of Clayey Soils and Its Correlation with Soil Organic Matter. Pedosphere, 2015, 25(2): 240-249.
[14] 吕海波,汪 稔,赵艳林,等.软土结构性破损的孔径分布试验研究.岩土力学,2003,24(4):573-578 .
[15] 叶为民,黄 雨,崔玉军,等. 自由膨胀条件下高压密膨胀粘土微观结构随吸力变化特征. 岩石力学与工程学报,2005,24(24):4570-4575.
[16] 汪为巍,易 远,张传成,等. 原状膨胀土干燥微观结构变化试验研究. 武汉轻工大学学报,2016,35(1):70-74,81.
[17] DELAGE P, MARCIAL D, CUI Y J, et al. Ageing Effects in a Compacted Bentonite: A Microstructure Approach. Géotechnique, 2006, 56(5): 291-304.
[18] 吕海波,曾召田,赵艳林,等.膨胀土强度干湿循环试验研究.岩土力学,2009,30(12):3797-3802.
基金
国网河南电网项目(5217L0160001)