GRS结构与MSE结构的性能差异及评价方法

徐超, 罗敏敏

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (3) : 1-7.

PDF(3026 KB)
PDF(3026 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (3) : 1-7. DOI: 10.11988/ckyyb.20180905
专家特约稿

GRS结构与MSE结构的性能差异及评价方法

  • 徐超, 罗敏敏
作者信息 +

Differences in Performance and Evaluation Methods Between Geosynthetic Reinforced Soil Structure and Mechanically Stabilized Earth Structure

  • XU Chao, LUO Min-min
Author information +
文章历史 +

摘要

GRS(Geosynthetic Reinforced Soil)结构是指加筋间距不超过30 cm、填料压实度超过95%的加筋土体;MSE(Mechanically Stabilized Earth)结构则是加筋间距相对较大的加筋土体,即目前工程中常用的加筋土结构。相比于MSE结构,GRS结构的加筋间距更小、压实度更高,一般表现出与MSE结构不同的受力机制和结构性能。通过模型试验,对比研究GRS结构和MSE结构在竖向沉降、侧向位移、筋材应变等方面的性能差异,以加深对这2种加筋土结构的认识。试验结果表明:GRS结构的侧向位移明显小于MSE结构,GRS结构中筋材的应变较小且分布更为均匀;这说明GRS结构与MSE结构在结构性能上确实存在明显的区别。此外,还将部分试验实测数据与相关计算评价方法的理论值进行了对比分析,发现适用于MSE结构的现有评价方法通常并不适用于GRS结构;这种评价方法上的差异进一步说明了GRS结构和MSE结构之间存在较大的差别,因此需在工程设计中引起注意并区别对待。

Abstract

GRS (Geosynthetic Reinforced Soil) Structures differ from MSE (Mechanically Stabilized Earth) structures in terms of force mechanism and structural performance. GRS structures are featured with smaller reinforcement spacing and higher compactness degree. The reinforcement spacing of GRS structure usually does not exceed 30 cm and the compactness degree is over 95%, while MSE structure which is commonly used in engineering is characterized by large reinforcement spacing. Through model tests, the behaviors of GRS and MSE structures are investigated and compared in aspects of vertical settlement, lateral displacement, and reinforcement strain. Test results reveal that GRS structures suffer from smaller lateral displacement and smaller yet more evenly-distributed strain of reinforcement than MSE structures, which further verifies the evident difference in structural performance between the two structures. In addition, theoretical analysis is also carried out in this study and theoretical calculation results are compared with some of the test results. The comparison demonstrates that current evaluation methods for MSE structures do not suit for GRS structures. In conclusion, such structural differences should be fully considered in engineering design.

关键词

加筋土 / GRS结构 / MSE结构 / 模型试验 / 性能差异 / 评价方法

Key words

reinforced soil / Geosynthetic Reinforced Soil (GRS) structure / Mechanically Stabilized Earth (MSE) structure / model test / differences in performance / evaluation methods

引用本文

导出引用
徐超, 罗敏敏. GRS结构与MSE结构的性能差异及评价方法[J]. 长江科学院院报. 2019, 36(3): 1-7 https://doi.org/10.11988/ckyyb.20180905
XU Chao, LUO Min-min. Differences in Performance and Evaluation Methods Between Geosynthetic Reinforced Soil Structure and Mechanically Stabilized Earth Structure[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(3): 1-7 https://doi.org/10.11988/ckyyb.20180905
中图分类号: TU411.93   

参考文献

[1] ADAMS M T, SCHLATTER W, STABILE T. Geosynthetic Reinforced Soil Integrated Abutments at the Bowman Road Bridge in Defiance County, Ohio[C]∥American Society of Civil Engineers, Geo-Denver 2007, Denver, Colorado, United States, February 18-21, 2007: 16-26.
[2] ARDAH A, ABU-FARSAKH M, VOYIADJIS G. Numerical Evaluation of the Performance of a Geosynthetic Reinforced Soil-Integrated Bridge System(GRS-IBS) under Different Loading Conditions[J]. Geotextiles & Geomembranes, 2017, 45(6): 558-569.
[3] ZHENG Y, FOX P J. Numerical Investigation of Geosynthetic-Reinforced Soil Bridge Abutments under Static Loading[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(5):273-280.
[4] SAGHEBFAR M, ABU-FARSAKH M, ARDAH A, et al. Performance Monitoring of Geosynthetic Reinforced Soil Integrated Bridge System(GRS-IBS) in Louisiana[J]. Geotextiles & Geomembranes, 2017, 45(2):34-47.
[5] 包承纲,丁金华,汪明元.极限平衡理论在加筋土结构设计中应用的评述[J].长江科学院院报,2014,31(3):1-10.
[6] SAGHEBFAR M, ABU-FARSAKH M, ARDAH A, et al. Full-scale Testing of Geosynthetic Reinforced Soil-integrated Bridge System[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2656:40-52.
[7] 周世良.格栅加筋土挡墙结构特性及破坏机理研究[D]. 重庆:重庆大学,2005.
[8] ADAMS M T, NICKS J, STABILE T, et al. Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide[R]. Springfield: U. S. Department of Commerce National Information Service, 2012.
[9] ADAMS M T, KETCHART K, WU J T H. Mini Pier Experiments: Geosynthetic Reinforcement Spacing and Strength as Related to Performance[C]∥American Society of Civil Engineers, Geo-Denver 2007, Denver, Colorado, United States, February 18-21, 2007:1-9.
[10]WU J T H, KETCHART K, ADAMS M. Two Full-scale Loading Experiments of Geosynthetic-reinforced Soil Abutment Wall[J]. International Journal of Geotechnical Engineering, 2013, 2(4):305-317.
[11]NICKS J E, ADAMS M T, OOI P S K, et al. Geosynthetic Reinforced Soil Performance Testing—Axial Loading Deformation Relationship[R]. Springfield: U. S. Department of Commerce National Information Service, 2013.
[12]WU J T H, PHAM T Q, ADAMS M T. Composite Behavior of Geosynthetic Reinforced Soil Mass[R]. Springfield: U. S. Department of Commerce National Information Service, 2013.
[13]ADAMS M, NICKS J, STABILE T, et al. Geosynthetic Reinforced Soil Integrated Bridge System synthesis report[R]. Springfield: U. S. Department of Commerce National Information Service, 2011.
[14]BUENO B S, BENJAMIM C V S, ZORNBERG J G. Field Performance of a Full-scale Retaining Wall Reinforced with Nonwoven Geotextiles[C]∥American Society of Civil Engineers, Geo-Frontiers Congress 2005, Austin, Texas, United States, January 24-26, 2005 :1-9.
[15]BENJAMIM C V S, BUENO B S, ZORNBERG J G. Field Monitoring Evaluation of Geotextile-reinforced Soil-retaining Walls[J]. Geosynthetics International, 2017, 14(2):100-118.
[16]KHOSROJERDI M, XIAO M, QIU T, et al. Evaluation of Prediction Methods for Lateral Deformation of GRS Walls and Abutments[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(2):06016022.
[17]HAN J, JIANG Y, XU C. Recent Advances in Geosynthetic-reinforced Retaining Walls for Highway Applications[J]. Frontiers of Structural & Civil Engineering, 2018,12(2):239-247.
[18]American Association of State Highway and Transportation Officials (AASHTO). LRFD Bridge Design Specifications[S]. Edition 7. Washington DC, USA: AASHTO, 2014.
[19]ZHENG Y, SANDER A C, RONG W, et al. Shaking Table Test of a Half-scale Geosynthetic-reinforced Soil Bridge Abutment[J]. Geotechnical Testing Journal, 2017, 41(1):171-192.
[20]袁文忠.相似理论与静力学模型试验[M]. 成都:西南交通大学出版社,1998.
[21]左东启等.模型试验的理论和方法[M].北京:水利电力出版社,1984.
[22]WU J T H. Design and Construction of Low Cost Retaining Walls: the Next Generation in Technology[M]. Denver: Colorado Transportation Institute, 1994.

基金

政府间国际科技创新合作重点专项(2016YFE0105800);国家自然科学基金项目(41772284)

PDF(3026 KB)

Accesses

Citation

Detail

段落导航
相关文章

/