聚合氯化铝(PAC)改性膨胀土的胀缩特性试验研究

武雷杰, 杨秀娟, 张路, 樊恒辉, 严武庆

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 84-89.

PDF(2044 KB)
PDF(2044 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 84-89. DOI: 10.11988/ckyyb.20180770
岩土工程

聚合氯化铝(PAC)改性膨胀土的胀缩特性试验研究

  • 武雷杰, 杨秀娟, 张路, 樊恒辉, 严武庆
作者信息 +

Experimental Study on Swelling and Shrinkage of Polyaluminum Chloride (PAC) Modified Expansive Soil

  • WU Lei-jie, YANG Xiu-juan, ZHANG Lu, FAN Heng-hui, YAN Wu-qing
Author information +
文章历史 +

摘要

膨胀土具有吸水膨胀和失水收缩的特性,容易引起上覆构筑物的破坏。通过颗粒分析试验、界限含水率试验、自由膨胀率试验、膨胀率试验、收缩试验和扫描电镜试验,对聚合氯化铝(PAC)改性膨胀土的物理与胀缩特性进行了研究,并与硅酸钠改性土对比。结果表明:掺入PAC的膨胀土,黏粒含量降低,亲水性减弱,液限降低,塑性指数显著下降;在一定掺量范围内,PAC改性后膨胀土的自由膨胀率、无荷膨胀率、有荷膨胀率、线缩率、体缩率等胀缩性指标降低;大量的絮状物通过填充土体中的孔隙与胶结土颗粒,使土体结构性得以改善。PAC改性膨胀土的机理在于其在水介质中可电离产生大量高价[Al]m+和[Alm(OH)n]3m-n絮凝物,这些生成物通过离子交换、电中和、架桥吸附和絮凝网捕作用,降低表面电荷,使黏土颗粒相互聚集,降低膨胀土的胀缩性。

Abstract

Expansive soil is prone to trigger destruction of overlying structures due to characteristics of water absorption expansion and water loss shrinkage. We examined the physical and expansive properties of polyaluminum chloride (PAC) modified expansive soil via particle analysis test, limit moisture content test, free expansion rate test, expansion rate test, shrinkage test and SEM test. Results demonstrated that the clay particle content, hydrophilicity, liquid limit and plasticity index of PAC modified expansive soil decreased; and also the expansion and shrinkage indicators, inclusive of free expansion rate, non-loaded expansion rate, loaded expansion rate, linear shrinkage rate and volumetric shrinkage rate, of PAC modified expansive soil all declined within a certain amount of PAC admixture. A large amount of flocculants improved the structure of soil by filling the pores of soil and cementing soil particles. The mechanism of PAC modifying expansive soil lies in a large number of high valence [Al]m+ and [Alm(OH)n]3m-n flocculants ionized in water medium, which could reduce surface charge by ion exchange, electric neutralization, cementing adsorption and flocculation enmeshment, so that clay particles gather together to lower the expansion and contraction of expansive soil.

关键词

膨胀土 / 聚合氯化铝 / 硅酸钠 / 胀缩性 / 微观结构

Key words

expansive soil / polyaluminum chloride / sodium silicate / swell-shrink characteristic / microstructure

引用本文

导出引用
武雷杰, 杨秀娟, 张路, 樊恒辉, 严武庆. 聚合氯化铝(PAC)改性膨胀土的胀缩特性试验研究[J]. 长江科学院院报. 2020, 37(1): 84-89 https://doi.org/10.11988/ckyyb.20180770
WU Lei-jie, YANG Xiu-juan, ZHANG Lu, FAN Heng-hui, YAN Wu-qing. Experimental Study on Swelling and Shrinkage of Polyaluminum Chloride (PAC) Modified Expansive Soil[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(1): 84-89 https://doi.org/10.11988/ckyyb.20180770
中图分类号: TU441   

参考文献

[1] 曲永新,张永双,冯玉勇,等.中国膨胀土粘土矿物组成的定量研究[J].工程地质学报,2002(增刊1):416-422.
[2] 李生林.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992.
[3] 冷 挺,唐朝生,徐 丹,等.膨胀土工程地质特性研究进展[J].工程地质学报,2018,26(1):112-128.
[4] 包承纲.膨胀土渠道边坡的破坏与防治对策[J].土工基础,2014,28(5):106-114.
[5] 孔令伟,陈正汉.特殊土与边坡技术发展综述[J].土木工程学报,2012,45(5):141-161.
[6] 唐朝生,施 斌,刘 春.膨胀土收缩开裂特性研究[J].工程地质学报,2012,20(5):663-673.
[7] 肖 杰,杨和平.膨胀土边坡浅层坍滑破坏原因剖析[J].公路交通科技,2016,33(7):47-52.
[8] 龚壁卫,程展林,胡 波,等.膨胀土裂隙的工程特性研究[J].岩土力学,2014,35(7):1825-1830,1836.
[9] 谭罗荣,孔令伟.膨胀土的强度特性研究[J].岩土力学,2005,26(7):1009-1013.
[10]陈志国,唐朝生,叶伟民,等.水-力耦合条件下膨润土-砂混合物的体变特性研究[J].岩土力学,2017,38(4):1041-1051,1059.
[11]周葆春,孔令伟,郭爱国.石灰改良膨胀土的应力-应变-强度特征与本构描述[J].岩土力学,2012,33(4):999-1005.
[12]郭爱国,孔令伟,胡明鉴,等.石灰改性膨胀土施工最佳含水率确定方法探讨[J].岩土力学,2007,28(3):517-521.
[13]边加敏.石灰改良膨胀土的水稳定性研究[J].长江科学院院报,2016,33(1):77-82.
[14]赵红华,龚壁卫,赵春吉,等.石灰加固膨胀土机理研究综述和展望[J].长江科学院院报,2015,32(4):65-70.
[15]黄 伟,汪时机,程明书,等.水泥改性膨胀土在侵蚀环境下的干湿循环效应研究[J].硅酸盐通报,2018,37(2):649-659.
[16]许 雷,鲁 洋,薛 洋,等.冻融循环下水泥改性膨胀土物理力学特性研究[J].长江科学院院报,2017,34(4):87-91,103.
[17]刘 鸣,刘 军,龚壁卫,等.水泥改性膨胀土施工工艺关键技术[J].长江科学院院报,2016,33(1):89-94,100.
[18]庄心善,杨文博,胡其志.磷尾矿改良合肥膨胀土强度试验研究[J].科学技术与工程,2018,18(5):281-284.
[19]杨 俊,雷俊安,张国栋.冻融循环对风化砂改良膨胀土无侧限抗压强度影响研究[J].长江科学院院报,2016,33(1):83-88.
[20]宗佳敏,宋迎俊,鲁 洋,等.冻融循环下废旧轮胎颗粒改性膨胀土无侧限抗压强度试验[J].长江科学院院报,2017,34(9):110-114.
[21]张德恒,孙树林,徐奋强.秸秆灰渣改良膨胀土三维膨胀特性试验研究[J].长江科学院院报,2014,31(10):128-133.
[22]王凤华,项 伟,袁悦锋.离子土壤固化剂改性膨胀土冻融过程中水分迁移试验研究[J].长江科学院院报,2018,35(7):111-116.
[23]刘清秉,项 伟,崔德山.离子土固化剂对膨胀土结合水影响机制研究[J].岩土工程学报,2012,34(10):1887-1895.
[24]黄 伟,项 伟,刘清秉,等.离子固化剂改性蒙脱土水合-孔隙关联演化机制[J].岩土力学,2018,39(10):3631-3640.
[25]贺立军,唐雪云.HEC固化剂加固膨胀土试验研究[J].人民黄河,2010,32(9):148-149,151.
[26]王保田,任 骜,张福海,等.使用CTMAB改良剂改良天然膨胀土的试验研究[J].岩土力学,2009,30(增刊2):39-42.
[27]尚云东,耿丙彦.HTAB改良膨胀土性能试验研究[J].土木工程学报,2010,43(9):138-143.
[28]李志清,胡瑞林,王立朝,等.阳离子改性剂改良膨胀土试验研究[J].岩土工程学报,2009,31(7):1094-1098.
[29]GB/T 50123—1999,土工试验方法标准[S].北京:中国计划出版社,1999.
[30]SL/T 237—1999,土工试验规程[S].北京:中国水利水电出版社,1999.
[31]GB 50112—2013,膨胀土地区建筑技术规范[S].北京:中国建筑工业出版社,2012.
[32]郭爱国,孔令伟,陈建斌.自由膨胀率试验的影响因素[J].岩土力学,2006,27(11):1949-1953.
[33]陈善雄,余 颂,孔令伟,等.膨胀土判别与分类方法探讨[J].岩土力学,2005,26(12):1895-1900.

基金

国家自然科学基金项目(51579215);杨凌示范区科技计划项目(2018NY-28)

PDF(2044 KB)

Accesses

Citation

Detail

段落导航
相关文章

/