水量调度下西江下游枯季径流演变特征

陈立华, 刘为福, 滕翔, 王焰

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 22-29.

PDF(2448 KB)
PDF(2448 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (1) : 22-29. DOI: 10.11988/ckyyb.20180751
水资源与环境

水量调度下西江下游枯季径流演变特征

  • 陈立华1,2,3, 刘为福1,2,3,4, 滕翔1,2,3, 王焰1,2,3
作者信息 +

Evolution Characteristics of Dry Season Runoff with Water Quantity Dispatching in the Lower Reach of Xijiang River

  • CHEN Li-hua1,2,3, LIU Wei-fu1,2,3,4, TENG Xiang1,2,3, WANG Yan1,2,3
Author information +
文章历史 +

摘要

对西江枯季水量调度下径流演变特征及极端枯水特征进行分析,为西江流域枯季水量统一调度和水资源高效利用提供参考。选取梧州水文站1950—2015年逐日流量资料,采用Mann-Kendall法、滑动T检验、R/S法等多种方法对西江下游枯季水量调度前后枯水年月流量序列进行趋势性对比分析,并详细探讨其变异性及未来变化特征。结果表明:西江下游枯季流量呈不显著上升趋势,呈正持续性,且变异可能性较小;水量调度后枯季11月份,次年1月份和2月份流量呈显著上升趋势,而10月份流量明显下降,即呈现拦蓄汛末洪水补给枯水月份特点,但作为枯水关键期的12月份流量呈微弱上升趋势值得关注;枯季各月流量的Hurst指数和相关系数C(t)表明,未来西江下游枯季各月流量仍与过去趋势相一致,且无显著变异。PPCC检验表明,LP-Ⅲ型分布描述西江枯水年月流量频率分布最优,以该分布频率P=90%为极端枯水标准,显示枯季径流前期随着指标流量尺度变小,极端枯水发生变多,但后期变少,可见枯季水量调度一定程度上有助于减少极端枯水事件的发生。

Abstract

By studying the characteristic of dry season runoff and extreme low-flow in the downstream of Xijiang River in the presence of water quantity dispatching, we aim to provide a reference for the unified scheduling in dry season and the efficient use of water resources in the Xijiang River Basin. According to the daily flow data at Wuzhou Hydrological Station from 1950 to 2015, we compared the annual and monthly low flow series before and after the water quantity dispatching via Mann-Kendall method, sliding T-test method, and R/S method, and discussed the variability and future change of low flow. Results revealed that over the past six decades, the dry season flow in the lower reach of Xijiang River showed no significant upward trend with a positive persistence and small possibility of variation. After water quantity dispatching, monthly low flow witnessed a significant upward trend in November, January and February, but decreased distinctly in October, presenting the characteristics of impoundment at the end of flood season. In December, a critical low-flow period, there was a slight upward trend, which is particularly worthy of attention. The Hurst index and correlation coefficient C(t) of each month’s flow indicate that the future monthly flow during dry season in the lower reach of Xijiang River will be consistent with the past trend with no significant variation. Probability plot correlation coefficient (PPCC) test demonstrates that the LP-III frequency distribution best fits the annual and monthly flow during dry season in Xijiang River Basin. Taking P=90% in this distribution frequency as extreme low-flow standard, we found that extreme low-flow occurred more with the reduction of index flow scale in the early stage, but less in the later stage, implying that water quantity dispatching in dry season is conducive to reducing the occurrence of extreme low flow events.

关键词

枯季径流 / 演变特征 / 水量调度 / Hurst指数 / 西江流域

Key words

dry season runoff / change characteristics / water quantity dispatching / Hurst index / Xijang River

引用本文

导出引用
陈立华, 刘为福, 滕翔, 王焰. 水量调度下西江下游枯季径流演变特征[J]. 长江科学院院报. 2020, 37(1): 22-29 https://doi.org/10.11988/ckyyb.20180751
CHEN Li-hua, LIU Wei-fu, TENG Xiang, WANG Yan. Evolution Characteristics of Dry Season Runoff with Water Quantity Dispatching in the Lower Reach of Xijiang River[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(1): 22-29 https://doi.org/10.11988/ckyyb.20180751
中图分类号: TV121   

参考文献

[1] 沈永平,王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土,2013, 35(5):1068-1076.
[2] DAI A. Drought under Global Warning: A Review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1):45-65.
[3] ZARCH M A A, SIVAKUMAR B, SHARMA A. Droughts in a Warming Climate: A Global Assessment of Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) [J]. Journal of Hydrology, 2015, 526:183-195.
[4] 赖荣康, 黄根华, 魏晓宇.枯水期西江径流及流域降水对ENSO事件的响应特征[J].云南大学学报(自然科学版),2010,32(增刊2):217-221.
[5] 万东辉, 石赟赟, 何 用,等.西江流域枯水径流频率分析[J].水电能源科学,2011,29(4):11-13,130.
[6] 葛永学, 江 涛, 梁楚坚, 等.西江枯季径流退水系数与流域特征关系研究[J].水文, 2014,34(1): 72-77.
[7] 褚茜茜,陈进,陈广才.长江源区1978—2009年径流极值序列变化趋势分析[J].长江科学院院报,2014,31(2):16-19.
[8] MANN H B. Nonparametric Tests against Trend[J]. Econometrica, 1945,13(3): 245-259.
[9] KENDALL M G. Rank Correlation Method[M]. London: Charles Griffin, 1975.
[10]于延胜,陈兴伟.基于Mann-Kendall法的径流丰枯变化过程划分[J].水资源与水工程学报, 2013,24(1):60-63.
[11]章诞武,丛振涛,倪广恒.基于中国气象资料的趋势检验方法对比分析[J].水科学进展, 2013,24(4):490-496.
[12]HURST H E, BLACK R P,SIMAIKA Y M. Long-term Storage: An Experimental Study[M]. London: Constable, 1965.
[13]谢 平, 雷红富, 陈广才,等.基于Hurst系数的流域降雨时空变异分析方法[J].水文, 2008,28(5):6-10.
[14]王文圣, 向红莲, 李跃清,等.基于集对分析的年径流丰枯分类新方法[J].四川大学学报(工程科学版), 2008, 40(5):1-6.
[15]朱颖洁.西江梧州站枯季径流变化的小波多尺度分析[J].桂林理工大学学报,2016,36(4):688-692.
[16]邓军涛,田玉里.2011—2012年枯水期珠江水量调度工作回顾[J].人民珠江, 2012(5): 76-79.
[17]刘建业, 赵旭升,邓军涛,等. 2007—2008年珠江枯季水量调度系统[J].人民珠江, 2008(2):7-11.
[18]何治波,刘 斌,田玉丽.2006—2007年枯水期珠江骨干水库调度工作回顾[J].人民珠江, 2007(6):1-6,10.
[19]涂新军, 陈晓宏, 张 强,等.东江径流年内分配特征及影响因素贡献分解[J].水科学进展,2012,23(4):493-501.

基金

国家重点研发计划项目(2017YFC0405900);国家自然科学基金项目(51669003,51469002);广西重点研发项目(桂科AB16380284)

PDF(2448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/