速凝浆液岩体倾斜裂隙注浆扩散模型研究

裴启涛, 丁秀丽, 黄书岭, 景锋

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (12) : 83-90.

PDF(2148 KB)
PDF(2148 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (12) : 83-90. DOI: 10.11988/ckyyb.20180733
岩土工程

速凝浆液岩体倾斜裂隙注浆扩散模型研究

  • 裴启涛1,2, 丁秀丽1, 黄书岭1, 景锋3
作者信息 +

Grouting Diffusion Model of Quick Setting Slurry in Dip Crack Rock Masses

  • PEI Qi-tao1,2, DING Xiu-li1, HUANG Shu-ling1, JING Feng3
Author information +
文章历史 +

摘要

针对以往渗透注浆扩散模型常以水平平板裂隙面为前提,未考虑岩体裂隙面产状对注浆扩散机制的影响问题,选取工程地质灾害处理中常用的水泥-水玻璃双浆液(C-S浆液)为速凝类注浆材料,将C-S浆液流型看成是具有黏度时变性的宾汉流体进行分析。基于流体力学理论及粗糙裂隙等效水力开度的确定方法,同时考虑了浆液自重作用的影响,建立了恒速率注浆条件下反映浆液黏度时空变化的倾斜裂隙注浆扩散模型。在此基础上,推导了浆液扩散区内的黏度及压力时空分布方程,定量确定了注浆压力与注浆时间及浆液扩散距离的关系。最后,借助于室内试验和有限元分析程序,研究了恒速率注浆时不同裂隙面产状下的浆液扩散规律,并将数值模拟结果与理论计算值进行对比,进一步验证了所建立的注浆扩散模型的有效性和合理性。研究成果可为注浆工程速凝类浆液注浆参数的确定提供借鉴。

Abstract

With horizontal cracks as the premise, conventional models of penetrative grouting diffusion do not reflect the impact of the occurrence of rock mass cracks on the grouting diffusion mechanism. In view of this, a theoretical diffusion model of grouting in dip cracks at constant grouting rate was established in consideration of the uneven spatial distribution of viscosity based on the theory of fluid mechanics and equivalent hydraulic aperture of rough walled cracks. Quick setting double slurry (cement-sodium silicate slurry), commonly used in engineering geological hazard treatment, was regarded as Bingham liquid with time-dependent behavior of viscosity in static water environment and was chosen as the grouting material. The dead-weight of grouting slurry itself was taken into consideration, Furthermore, the space-time distribution equation of viscosity and pressure in the diffusion region of slurry was derived. And the relations of grouting pressure versus grouting time and grouting diffusion distance were quantitatively determined. Finally, the slurry diffusion characteristics in the presence of different occurrence of cracks at constant grouting rate was studied by means of laboratory tests and finite element analysis procedures. Comparison between numerical simulation results and theoretical calculations verified the validity and rationality of the theoretical model. The results may be constructive to the determination of grouting parameters of quick setting slurry in practical engineering.

关键词

速凝浆液 / 倾斜裂隙 / 注浆 / 扩散模型 / 黏度时变性 / 注浆参数

Key words

quick setting slurry / dip crack / grouting / diffusion model / time-dependent behavior of viscosity / grouting parameters

引用本文

导出引用
裴启涛, 丁秀丽, 黄书岭, 景锋. 速凝浆液岩体倾斜裂隙注浆扩散模型研究[J]. 长江科学院院报. 2019, 36(12): 83-90 https://doi.org/10.11988/ckyyb.20180733
PEI Qi-tao, DING Xiu-li, HUANG Shu-ling, JING Feng. Grouting Diffusion Model of Quick Setting Slurry in Dip Crack Rock Masses[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(12): 83-90 https://doi.org/10.11988/ckyyb.20180733
中图分类号: TU443   

参考文献

[1] SHIMODA M, OHMORI H. Ultra-fine grouting material[C] ∥Proceedings of Conference on Grouting in Geotechnical Engineering. New Orleans, Louisiana, February 10-12, 1982: 77-91.
[2] 李术才,李树忱,张庆松,等. 岩溶裂隙水与不良地质情况超前预报研究[J] . 岩石力学与工程学报,2007,26(2):217-225.
[3] 倪宏革,孙峰华,杨秀竹,等. 采用黏土固化浆液进行岩溶路基注浆加固试验研究[J] . 岩石力学工程学报,2005,24(7):1242 -1247.
[4] FRANSSON A, TSANG C F, RUTQVIST J, et al. A New Parameter to Assess Hydromechanical Effects in Single-hole Hydraulic Testing and Grouting[J] . International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 1011-1021.
[5] DAHLO T S, NILSEN B. Stability and Rock Cover of Hard Rock Subsea Tunnels[J] . Tunnelling and Underground Space Technology, 1994, 9(2): 151-158.
[6] FUNEHAG J, GUSTAFSON G. Design of Grouting with Silica Sol in Hard Rock—New Methods for Calculation of Penetration Length, Part I[J] . Tunnelling and Underground Space Technology, 2008, 23(1): 1-8.
[7] MILLER E A, ROYCROF G A. Compaction Grouting Test Program for Liquefaction Control[J] . Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 355-361.
[8] 刘人太,李术才,张庆松,等. 岩溶裂隙水探查方法优化与工程治理研究[J] . 岩土力学,2011,32(4):1095-1100.
[9] 阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J] . 岩石力学与工程学报,2005,24(15):2709-2714.
[10] 阮文军. 注浆扩散与浆液若干基本性能研究[J] . 岩土工程学报, 2005, 27(1): 69-73.
[11] 刘 健,张载松,韩 烨,等. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J] .岩土力学, 2015,36(2): 361-368.
[12] 李术才,刘人太,张庆松,等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J] .岩石力学与工程学报,2013,32(12):2415- 2421.
[13] 张庆松,张连震,张 霄,等. 基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J] .岩石力学与工程学报,2015,34(6):1198-1210.
[14] 张军贤. 幂律型流体劈裂注浆机理研究[J] .长江科学院院报,2016,33(12):113-118.
[15] 慕 欣,陈喜坤,陈洪祥. 砂细度模数对壁后注浆浆液强度的影响[J] .长江科学院院报,2017,34(4):136-139.
[16] 陈喜坤,朱 伟,王 睿. 注入初期盾构壁后注浆体的三轴试验研究[J] . 长江科学院院报,2017,34(4):140-143.
[17] 熊祥斌,张楚汉,王恩志. 岩石单裂隙稳态渗流研究进展[J] . 岩石力学与工程学报,2009,28(9):1839-1847.
[18] 周志芳,王锦国. 裂隙介质水动力学[M] . 北京:中国水利水电出版社,2004:27-46.
[19] 郑长成. 岩体裂隙内稳定水泥浆液扩散范围的理论分析[J] . 水利与建筑工程学报, 2006, 4(2): 1-5.
[20] 王 媛,速宝玉. 单裂隙面渗流特性及等效水力隙宽[J] . 水科学进展,2002,13(1):61-68.
[21] 吴望一. 流体力学[M] . 北京:北京大学出版社,1982.

基金

国家重点研发计划项目(2016YFC0401802);国家自然科学基金资助项目(51539002, 51609018);中央级公益性科研院所基本科研业务费项目(CKSF2017030/YT, CKSF2017054/YT)

PDF(2148 KB)

Accesses

Citation

Detail

段落导航
相关文章

/