为了验证卫星降水产品对地面站点降水观测数据的可替代性,研究利用地面站点观测数据,采用统计分析方法,对三峡区间流域TMPA 3B43V7、GPM IMERG卫星降水产品进行月尺度下的精度评估。结果表明:2种卫星降水产品表现出较好的一致性;在流域上游地势平坦区域纬度较低,卫星降水产品精度相对较差;在流域下游高山峡谷地形纬度较高,卫星降水产品精度较好;卫星降水产品具有替代地面站点降水观测数据的潜力,在三峡区间流域具有一定的适用性。研究成果可为应用卫星降水产品进行三峡区间流域水文模拟、降水趋势分析等奠定基础。
Abstract
In an attempt to verify the feasibility of substituting ground observation data with satellite precipitation data, the accuracies of TMPA 3B43V7 and GPM IMERG satellite precipitation products in the Three Gorges Basin were evaluated by statistical analysis based on the observation data from ground sites. The results reflected that TMPA and IMERG showed good consistency. In the upper flat area of the Three Gorges Region with low latitude, the accuracies of satellite precipitation products were poor, whereas in the alpine-gorge area in the lower reach of the Region, the latitude was higher, and the accuracies were better. Satellite precipitation products have the potential of replacing ground site precipitation data, and are applicable in the study basin.
关键词
TMPA /
IMERG /
卫星降水产品 /
三峡区间 /
月平均降水量
Key words
TMPA /
IMERG /
satellite precipitation product /
Three Gorges Region /
monthly average precipitation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张继国, 谢 平, 龚艳冰, 等. 降雨信息空间插值研究评述与展望[J] . 水资源与水工程学报, 2012, 23(1): 6-9, 13.
[2] 唐国强, 万 玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J] . 遥感技术与应用, 2015, 30(4): 607-615.
[3] 许继军, 杨大文, 蔡治国. 分布式水文模型结合雷达测雨用于三峡区间的洪水预报[J] . 长江科学院院报, 2007, 24(6): 42-48.
[4] 李 哲, 杨大文, 洪 阳, 等. 基于天气雷达的长江三峡区间降雨定量估测方法[J] . 水力发电学报, 2014, 33(3): 29-35, 54.
[5] 唐国强, 李 哲, 薛显武, 等. 赣江流域TRMM遥感降水对地面站点观测的可替代性[J] . 水科学进展, 2015, 26(3): 340-346.
[6] HUFFMAN G J. The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG)[R] . New York: NASA, 2019.
[7] 吴 琼,仰美霖,窦芳丽.GPM双频降水测量雷达对降雪的探测能力分析[J] .气象,2017,43(3):348-353.
[8] TANG G Q, MA Y Z, LONG D, et al. Evaluation of GPM Day-1 IMERG and TMPA Version-7 Legacy Products over Mainland China at Multiple Spatiotemporal Scales[J] . Journal of Hydrology, 2016, 533: 152-167.
[9] 金晓龙, 邵 华, 张 弛, 等. GPM卫星降水数据在天山山区的适用性分析[J] . 自然资源学报, 2016, 31(12): 2074-2085.
[10] 魏志明, 岳官印, 李 家, 等. GPM与TRMM降水数据在海河流域的精度对比研究[J] . 水土保持通报, 2017, 37(2): 171-176.
[11] TANG G Q, ZENG Z Y, LONG D, et al. Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?[J] . Journal of Hydrometeorology, 2016, 17: 121-137.
[12] SHARIF H O, AL-ZAHRANI M, EL HASSAN A. Physically, Fully-distributed Hydrologic Simulations Driven by GPM Satellite Rainfall over an Urbanizing Arid Catchment in Saudi Arabia[J] . Water, 2017, 9(3): 163, doi: 10.3390/w9030163.
[13] 李 哲, 杨大文, 田富强. 基于地面雨情信息的长江三峡区间洪水预报研究[J] . 水力发电学报, 2013, 32(1): 44-49, 62.
[14] 邱云翔, 张潇潇, 刘国东. 粒子群算法优化BP在降雨空间插值中的应用[J] . 长江科学院院报, 2017, 34(12): 28-32.
[15] ZHANG X X, LIU G D, WANG H T, et al. Application of a Hybrid Interpolation Method Based on Support Vector Machine in the Precipitation Spatial Interpolation of Basins[J] . Water, 2017, 9(10): 760, doi: 10.3390/w9100760.
基金
国家重点研发计划项目((2016YFC0402210)