为获取力学性能良好的棉秆-聚苯乙烯(EPS)砌块,以棉秆长度和粒径为指标,将棉秆分为屑沫、碎屑以及纤维3种形态,研究不同棉秆形态对棉秆-EPS砌块物理力学性能的影响。结果表明:棉秆形态对砌块早期力学性能影响不显著;28 d龄期后的砌块,配合比一定时,当棉秆长度和粒径较小时(屑沫),砌块的抗压强度、抗劈裂强度及轴心抗压强度最大,分别为6.95,0.93,6.88 MPa;而棉秆粒径增大时(碎屑),其砌块的抗压强度、抗劈裂强度及轴心抗压强度均降低;当棉秆较长为纤维状态时,砌块的抗折强度和弹性模量均最大,分别为1.44 MPa和80.42 MPa,但棉秆纤维长度的增加会增大砌块的吸水率。说明棉秆的形态可有效改变棉秆-EPS砌块的物理力学性能,在应用时可根据工程的需要选择不同的棉秆形态。成果为植物纤维生态砌块的应用提供一定的理论依据。
Abstract
In the aim of preparing cotton straw-expanded polystyrene (EPS) composite block with good mechanical properties, we probed into the influence of straw form on the physico-mechanical properties of the block. The form of straw was classified as particle, chip, and fiber according to length and particle size of straw. Result showed no significant effect on the early mechanical properties of block by straw form. However, when the mix proportion was fixed and the length and size was small (particles), the block of 28-day age or above had the largest compression strength, anti-splitting strength and axial compressive strength, reaching 6.95 MPa, 0.93 MPa and 6.88 MPa, respectively; when the particle size of straw increased (chips), the compression strength, anti-splitting strength and axial compressive strength of the block declined; when the length of straw increased (fiber), the flexural strength and elastic modulus of the block were the largest, amounting to 1.44 MPa and 80.42 MPa, respectively; but the elongation of straw fiber also instigated the water absorption of blocks. In conclusion, the form of straw has remarkable influence on the physico-mechanical properties of cotton straw-EPS block. We should select proper straw form according to specific engineering requirement.
关键词
棉秆-EPS砌块 /
棉秆形态 /
力学性能 /
现场测试 /
植物纤维
Key words
cotton straw-EPS block /
form of straw /
mechanical property /
filed test /
recycle waste material /
straw fiber
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯伟刚.棉杆纤维砌块力学性能研究及生态复合墙体受力性能分析[D].西安: 西安建筑科技大学,2010.
[2] PARISI F, ASPRONE D, FENU L, et al. Experimental Characterization of Italian Composite Adobe Bricks Reinforced with Straw Fibers[J]. Composite Structures, 2015, 122: 300-307.
[3] 张 强, 李耀庄, 刘保华. 棉秆资源在混凝土中应用的研究进展[J].硅酸盐通报, 2015, 34(4): 1000-1003.
[4] 王 康, 陈国新, 李建华,等. 棉秆纤维对陶粒泡沫混凝土力学性能影响的研究[J].新型建筑材料,2016, 43(7):113-116.
[5] 陈国新, 王佳慧, 陈亮亮. 棉杆水泥基砌块材料的基本力学性能[J].材料科学与工程学报,2014, 32(6): 868-871.
[6] 王佳慧. 配植物筋砌块砌体基本力学性能试验研究[D].乌鲁木齐: 新疆农业大学,2014.
[7] 汪 冲. 植物纤维混凝土砌块砌体强度理论研究及有限元分析[D].武汉: 武汉理工大学,2014.
[8] 王兴肖. 植物纤维增强砌块砌体力学性能试验研究与有限元分析[D].武汉: 武汉理工大学,2010.
[9] 王 沛,柴寿喜,仲晓梅. 麦棉秆加筋土的轻型击实试验与击实土的抗压性能[J]. 长江科学院院报,2012,29(5): 26-31.
[10]冯凌云,袁 群,马 莹,等. 橡胶混凝土力学性能的试验研究[J].长江科学院院报,2015,32(7): 115-118.
[11]王 伟,周爱兆,冯 丽,等. 再生粗骨料混凝土抗压强度-龄期数学模型[J].建筑材料学报, 2012, 15(5): 633-637.
[12]赵圆圆. 硫酸钙晶须再生混凝土基本性能研究[D].徐州:中国矿业大学, 2015.
[13]夏冰华, 刘远才, 许纯梅. GRT纤维-橡胶粉陶粒混凝土轴心抗压的数学分析[J].混凝土与水泥制品,2012, 9(9): 41-45.
[14]陈 兵, 刘 睫. 纤维增强泡沫混凝土性能试验研究[J].建筑材料学报,2010, 13(3): 286-290.
[15]殷 慧,董必钦,丁 铸,等. 混凝土的渗水、吸水特性研究[J]. 低温建筑技术,2009,128(2):4-6.
[16]贾兴文. 粉煤灰加气混凝土吸水性能研究[J].房材与应用,2006,34(4):9-11.
[17]张磊蕾, 王武祥. 改善泡沫混凝土吸水性能的研究[J].建筑技术与应用,2011(6):1-3.
基金
国家自然科学基金项目(51668054);大学生创新项目(TDGRI20172);新疆生产建设兵团社会科技攻关项目(2015AD025)