摘要
以澜沧江某水电站左坝肩边坡为研究对象,通过野外调查发现,坡体广泛发育一类同时具有碎裂结构和显著松动变形的特殊岩体,由此提出了碎裂松动岩体的概念。对其发育特征进行研究后发现,碎裂松动岩体不仅具有从坡表往里依次呈现出散体-碎裂-块裂的结构特征,而且其发育深度与极强卸荷带也具有较好的对应关系。鉴于此,提出了其划分标准:将具有散体-碎裂-块裂结构的岩体深度作为其结构上的发育深度,而极强卸荷带发育深度则作为其卸荷上的发育深度,取二者的平均值作为最终的发育深度。为了验证利用该标准划分的结果能够指导边坡开挖,采用UDEC进行模拟,结果表明:边坡开挖后,整体变形小、稳定性较好,仅局部开挖面附近出现小规模的危岩体。建议沿划分的碎裂松动岩体发育深度对该边坡进行开挖,2 880 m高程上、下开挖坡比分别为1∶1.5和1∶1。通过碎裂松动岩体的划分,能够为此类特殊的边坡岩体合理的开挖深度的确定提供参考。
Abstract
Field survey on the left abutment slope of a hydropower station on the Lancang River reveals a type of special rock mass with fragmented structure and significant loosening deformation synchronously. On this basis, we put forward the concept of cataclastic loose rock mass. Study on its development characteristics unveils that the cataclastic loose rock mass features with granular structure, cataclastic structure, and block structure from the slope surface to the interior, and its development depth corresponds well to the extremely-strong unloading zone. In view of this, we put forward the division standard: the depth of the rock mass with granular structure, cataclastic structure and block structure is regarded as the development depth of cataclastic rock mass, while the depth of the extremely-strong unloading zone is the depth of its unloading zone; and the average value of the two is determined as the ultimate development depth. In order to prove that the result acquired by this standard can be used to guide the excavation of the slope, we performed simulations using UDEC. Results demonstrated that after the excavation of the slope, besides the dangerous rock in a small scale near the excavation face, the overall deformation is small, and the stability is good. Therefore, we recommend to excavating the slope along the division depth of the cataclastic rock mass, and the excavation slope ratio above and below 2 880 m height is 1∶1.5 and 1∶1, respectively.The results prove that the division of cataclastic loose rock mass provides reasonable reference for the excavation depth in such special slope rock mass.
关键词
碎裂松动岩体 /
发育特征 /
划分标准 /
数值模拟 /
开挖变形响应
Key words
cataclastic loose rock mass /
development characteristics /
standards of division /
numerical simulation /
response of excavation deformation
郑达, 王宇, 姚青, 李文龙.
某水电站坝肩边坡碎裂松动岩体发育特征及开挖变形响应分析[J]. 长江科学院院报. 2019, 36(11): 50-56 https://doi.org/10.11988/ckyyb.20180336
ZHENG Da, WANG Yu, YAO Qing, LI Wen-long.
Cataclastic Loose Rock Mass on the Abutment Slope of a Hydropower Station: Development Characteristics and Excavation Deformation Response[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(11): 50-56 https://doi.org/10.11988/ckyyb.20180336
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建荣.如美水电站边坡碎裂岩体成因机理及边坡岩体质量分级研究[D].宜昌: 三峡大学,2013.
[2] 赵伟华,黄润秋,赵建军,等.强震条件下碎裂岩体崩塌机理及崩塌后壁对堆积体稳定性影响研究[J].工程地质学报, 2011, 19(2):205-213.
[3] 朱 玮,许劲松.碎裂结构围岩破坏模式的模糊数学分析[J].大连理工大学学报, 1990,30(2):87-94.
[4] WANG C, TANNANT D D, LILLY P A. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes Using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(3): 415-424.
[5] 邹 俊. 高寒山区深切河谷碎裂松动岩体发育特征及稳定性研究[D]. 成都:成都理工大学,2016.
[6] 袁 勇. 澜沧江某水电站中坝址区左岸碎裂松动岩体成因机制及稳定性分析[D]. 成都:成都理工大学,2016.
[7] 黄 鹏. 澜沧江某水电站右岸碎裂松动岩体工程特性及岸坡稳定性研究[D]. 成都:成都理工大学,2016.
[8] 黄 鹏,乔 鹏. 高原寒区碎裂松动岩发育特征研究[J]. 人民珠江, 2018,39(1):13-21.
[9] 苟晓峰,邓 辉,邹 俊. 某水电站碎裂松动岩体形成机制及稳定性分析[J]. 路基工程, 2017(6):169-173.
[10]瞿生军. 西藏如美水电站右岸坝肩边坡岩土质量及变形破坏模式研究[D]. 成都:成都理工大学,2017.
[11]蔺 冰. 澜沧江如美水电站左岸坝肩边坡开挖响应及稳定性评价[D]. 成都:成都理工大学,2017.
[12]陈本龙. 如美水电站强风化、强卸荷高边坡稳定性研究[D]. 北京:清华大学,2013.
[13]谷德振. 岩体工程地质力学基础[M]. 北京:科学出版社,1983.
[14]GB 50287—2016, 水力发电工程地质勘察规范[S].北京:中国计划出版社,2006.
基金
国家自然科学基金项目(41772317);成都理工大学地质灾害防治与地质环境保护国家重点实验室自主研究课题(SKLGP2015Z015);中国华能集团科技项目(HNKJ16-H15)