花岗岩残积土遇水软化崩解不仅造成施工困难,也给基坑自身安全及周边环境保护带来极大风险。为了研究坑底被动区花岗岩残积土遇水软化崩解对基坑的影响,以花岗岩残积土地区某地铁车站深基坑为对象,运用PLAXIS有限元软件,系统地开展了土体弱化及弱化深度对基坑变形受力影响的有限元计算。结果表明:围护结构水平位移最大值、踢脚变形、地表沉降最大值均随着坑底土体弱化深度的增加而增大,当弱化深度较小时,上述值增长幅度较小,当弱化深度较大时,上述值急剧增大;此外,围护结构水平位移最大值位置及最大弯矩会随着土体弱化深度的增加而增大,临近坑底支撑会随土体弱化深度的增加而承担较大的转移压力。因此,在花岗岩残积土地区基坑工程施工过程中,需减少坑底土体弱化深度,避免土体大范围弱化。研究结果可为其他类似工程施工决策提供参考。
Abstract
The softening and then disintegration of granite residual soil encountering water often pose great difficulties to construction and security threats to foundation pit and surrounding environment. With the deep excavation of a metro station in granite residual soil zone as case study, we probed into the influence of granite residual soil softening at the bottom of excavation encountering water through PLAXIS finite element simulation. Results illustrated that the maximum horizontal displacement of support structure, the deformation of skirting, and the maximum ground settlement all raised with the deepening of softened soil. When the depth of softened soil was small, the above deformations were small too; when the depth of softened soil was large, the above values surged correspondingly. Moreover, the location of maximum horizontal displacement and the maximum bending moment also increased with the deepening of softened soil. The inner bracing around excavation face undertook more shift pressure as the depth of softened soil increased. Therefore, the depth of softened soil in passive zone should be reduced in the deep excavation in granite residual soil zone. The research finding serves as an experience for similar construction.
关键词
基坑 /
被动区 /
花岗岩残积土 /
软化崩解 /
弱化深度 /
变形性状
Key words
deep excavation /
passive zone /
granite residual soil /
softening and disintegration /
depth of softened soil /
deformation behaviour
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国地图出版社.中国自然地理图集[M].2版.北京:中国地图出版社, 1998.
[2] 中国科学院《中国自然地理》编辑委员会. 中国自然地理地貌[M].北京:科学出版社, 1980.
[3] SHAW R. Variations in Sub-tropical Deep Weathering Profiles over the Kowloon Granite, Hong Kong[J]. Journal of the Geological Society, 1997, 154(6): 1077-1085.
[4] 吴能森,赵 尘,侯伟生.花岗岩残积土的成因、分布及工程特性研究[J].平顶山工学院学报,2004,13(4):1-4.
[5] 肖晶晶. 花岗岩残积土的结构性及应力应变关系试验研究[D].广州:华南理工大学,2012.
[6] 颜 波,汤连生,胡 辉,等.花岗岩风化土崩岗破坏机理分析[J].水文地质工程地质,2009,36(6):68-71,84.
[7] 孙成伟. 花岗岩残积土工程特性及地铁深基坑设计技术研究[D].武汉:中国地质大学,2014.
[8] 秦爱芳,李永圃,陈有亮.上海地区基坑工程中的土体注浆加固研究[J].土木工程学报,2000,33(1):69-72,82.
[9] 秦爱芳,胡中雄,彭世娟.上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J].岩土工程学报,2008,30(6):935-940.
[10]张宇捷,李俊才,陈志宁,等.软土基坑中被动区加固对周围环境的影响[J].施工技术,2009,38(11):91-93.
[11]马海龙.基坑被动区加固对支护影响的研究[J].岩土工程学报,2013,35(增刊2):573-578.
[12]屈若枫,马 郧,徐光黎,等.基坑被动区阶梯式加固尺寸对桩位移影响分析[J].长江科学院院报, 2013, 30(7): 86-90,100.
[13]康志军,谭 勇,邓 刚,等.被动区土体加固对深基坑变形影响的研究[J].长江科学院院报,2017,34(6):119-123.
[14]BRINKGREVE R B J, BROERE W.PLAXIS Material Models Manual[M]. Netherlands: Delft University, 2006.
[15]周恩平. 考虑小应变的硬化土本构模型在基坑变形分析中的应用[D]. 哈尔滨:哈尔滨工业大学,2010.
[16]徐芳超. 相邻深基坑同期开挖相互影响变形性状研究[D].厦门:华侨大学,2015.
[17]时振兴,陈龙文.深基坑开挖至花岗岩残积土基底时围护结构变形过大的原因分析及应对措施[J].广州建筑,2016,44(4):23-26.