长江源径流演变及原因分析

李其江

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (8) : 1-5.

PDF(4251 KB)
PDF(4251 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (8) : 1-5. DOI: 10.11988/ckyyb.20180009
专家特约稿

长江源径流演变及原因分析

  • 李其江
作者信息 +

Investigation of Runoff Evolution at the Headwaters of Yangtze River and Its Driving Forces

  • LI Qi-jiang
Author information +
文章历史 +

摘要

变化环境下江河源区水文水资源效应问题已成为国内外水科学领域的研究热点。为了探究长江源径流演变及其原因,在分析长江源径流演变特征的基础上,探讨了地面气象因子和大气环流因子对径流的影响。结果表明:长江源区直门达站径流年内分配不均,年径流有显著上升趋势;1956—2016年径流系列在2004年发生突变,具有23~24 a和42~43 a的显著周期,42~43 a的周期项具有最大波动能量;降水量是径流变化的主导因素,水面蒸发量是径流变化的重要影响因素,但气温影响径流的变化不显著;直门达站月流量对青藏高原指数(TPI_B)有很好的响应,青藏高原低涡与降水的空间分布和暴雨量级相吻合。研究成果可为长江源水资源管理部门决策提供参考。

Abstract

Evolution of hydrological cycle and water resources has been a hot topic for scholars and researchers around the world. This holds even more true in water source areas under changing environments. In this paper, the evolution characteristics of runoff in source regions of Yangtze River were investigated using statistical methods. On this basis, the impacts of both surface meteorological factors and upper atmospheric circulation factors on runoff were evaluated. Results show that runoff at Zhimenda station in the headwaters of Yangtze River distributed unevenly during a year, and a significant increasing trend is observed with regard to annual runoff. An obvious abrupt change in the year of 2004 was observed for runoff time series from 1956 to 2016. Wavelet analysis indicated that there were two significant periods of these time series, which were 7-8 years and 20-21 years, respectively. The biggest power of the spectrum was observed in the 42-43 year period. As for the impacts of different meteorological and atmospheric factors on runoff, our study indicated that precipitation was the leading driving force for runoff variation, and the role of water surface evaporation was also important.The variation of runoff was also influence by air temperature, but the effect was not significant enough. There was good agreement between monthly runoff observations of Zhimenda station and the Tibetan Plateau Index_B (TPI_B). Both the spatial distribution and magnitude of precipitation agreed well with the Tibetan Plateau vortex.

关键词

长江源 / 径流演变 / 大气环流因子 / 青藏高原指数 / 地面气象因子

Key words

headwaters of the Yangtze River / runoff evolution / factor of atmospheric circulation / Tibetan Plateau Index / surface meteorological factors

引用本文

导出引用
李其江. 长江源径流演变及原因分析[J]. 长江科学院院报. 2018, 35(8): 1-5 https://doi.org/10.11988/ckyyb.20180009
LI Qi-jiang. Investigation of Runoff Evolution at the Headwaters of Yangtze River and Its Driving Forces[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(8): 1-5 https://doi.org/10.11988/ckyyb.20180009
中图分类号: TV121.2   

参考文献

[1] 胡珊珊,郑红星,刘昌明,等.气候变化和人类活动对白洋淀上游水源区径流的影响[J].地理学报,2012,67(1):62-70.
[2] 李培基.青藏高原积雪对全球变暖的响应[J].地理学报,1996,51(3):260-265.
[3] 梁 川,侯小波,潘 妮.长江源高寒区域降水和径流时空变化规律分析[J].南水北调与水利科技,2011,9(1):53-59.
[4] 张士锋,华 东,孟秀敬,等.三江源气候变化及其对径流的驱动分析[J].地理学报,2011,66(1):13-24.
[5] 刘希胜,李其江,段水强,等.黄河源径流演变特征及其对降水的响应[J].中国沙漠,2016,36(6):1721-1730.
[6] 陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
[7] 李 林,申红艳,戴 升,等.黄河源区径流对气候变化的响应及未来趋势预测[J].地理学报,2011,66(9):1261-1269.
[8] 曹建廷,秦大河,罗 勇,等.长江源区1956—2000年径流量变化分析[J].水科学进展,2007,18(1):29-31.
[9] CUO L, ZHANG Y X, ZHU F X,et al. Characteristics and Changes of Streamflow on the Tibetan Plateau: A Review[J]. Journal of Hydrology: Regional Studies, 2014, (2): 49-68.
[10]刘贤赵,李嘉竹,宿 庆,等.基于集中度和集中期的径流年内分配研究[J].地理科学,2007,27(6):791-795.
[11]魏凤英.现代气候统计诊断与预测技术[M].2版.北京:气象出版社,2007.
[12]张少文,丁 晶,廖 杰,等.基于小波的黄河上游天然年径流变化特性分析[J].四川大学学报(工程科学版),2004,36(3):32-37.
[13]常国刚,李 林,朱西德,等.黄河源区地表水资源变化及其影响因子[J].地理学报,2007,62(3):312-320.
[14]王灵军,燕华云.长江源区径流年内分配时程变化影响因子分析[J].水资源与水工程学报,2011,22(1):174-176.
[15]乔云亭,陈烈庭,张庆云.东亚季风指数的定义及其与中国气候的关系[J].大气科学, 2002, 26(1):69-82.
[16]李夫星,陈 东,汤秋鸿.黄河流域水文气象要素变化及东亚夏季风的关系[J].水科学进展,2015,26(4):481-490.
[17]赵振国.中国夏季旱涝及环境场[M].北京:气象出版社,2000.
[18]李国平.青藏高原动力气象学[M].北京:气象出版社,2007.

基金

国家自然科学基金项目(41772173)

PDF(4251 KB)

Accesses

Citation

Detail

段落导航
相关文章

/