长江下游河道河床阻力分布特征及影响因素分析

陈钢,程和琴

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (8) : 10-16.

PDF(2535 KB)
PDF(2535 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (8) : 10-16. DOI: 10.11988/ckyyb.20171273
江湖泥沙与治理

长江下游河道河床阻力分布特征及影响因素分析

  • 陈钢1,2,程和琴1
作者信息 +

Riverbed Resistance in the Lower Reach of Yangtze River: Distribution Characteristics and Influencing Factors

  • CHEN Gang1,2, CHENG He-qin1
Author information +
文章历史 +

摘要

河床阻力是河流动力学的基本问题之一,与河流的泄流能力及挟沙能力息息相关。利用2014—2016年长江下游九江至河口段河床的多波束、ADCP及底质沉积物的同步采集数据,通过计算沙粒阻力和沙波阻力,分析不同河段河床阻力的分布特征,探讨河床阻力与宽深比、粒度及流速3个因素之间的相关关系,并对比三峡蓄水前后主要河段河床阻力及其与影响因素之间相关性的变化特征。研究结果表明:三峡蓄水前后,总体上,长江九江至吴淞口河段最大河床沙粒阻力和平均沙粒阻力分别减小57%和63%。长江下游河道河床阻力在蓄水前后均以沙粒阻力为主,沙波阻力在河床阻力中占比不足1%且随着三峡工程的运用有减小的趋势。三峡蓄水前,长江下游河道河床阻力与3个影响因素相关性从大到小依次为粒度、流速和宽深比,相应的平均决定系数依次为0.48,0.30,0.25;而三峡蓄水后,长江下游河道河床阻力与3个影响因素相关性从大到小依次为流速、宽深比和粒度,相应的平均决定系数依次为0.71,0.41,0.30,但各河段河床阻力在不同时期主要影响因素又有所区别。研究结果可为长江下游航道整治、航运安全和防洪提供参考依据。

Abstract

As a fundamental issue of river dynamics, the resistance of river bed is closely related to the discharge capacity and sediment carrying capacity of river. The distribution of river bed resistance in different reaches was analyzed by calculating the sand particle resistance and sand wave resistance based on data acquired synchronously using multi-beam measurement system, ADCP, and particle size data from Jiujiang to Hekou in 2014-2016. The relations of bed resistance against ratio of width to depth, particle size, and flow velocity were examined. Furthermore, the bed resistance and influencing factors for main segments before and after the impoundment of Three Gorges Project (TGP) were also compared. Results concluded that: around the impoundment of the TGP, the maximum and average sand particle resistance from Jiujiang to Wusongkou decreased by 57% and 63%, respectively. Meanwhile, sand particle resistance was the dominant resistance, while sand wave resistance accounted for less than 1% and even tended to decline along with the operation of TGP. Before the impoundment of TGP, bed resistance in the lower reach of the Yangtze River was the most significantly correlated with particle size, followed by velocity and width to depth ratio; and the corresponding average correlation coefficients was 0.48, 0.30, and 0.25, respectively. After the impoundment of TGP, the correlation ranked from flow velocity, width to depth ratio to particle size in sequence; and the corresponding average correlation coefficients was 0.71, 0.41, and 0.30, respectively. The main influential factors of bed resistance in different reaches varied with time period.

关键词

长江下游 / 河床阻力 / 分布特征 / 宽深比 / 粒度 / 流速 / 三峡蓄水

Key words

the lower reach of Yangtze River / riverbed resistance / distribution characteristics / ratio of width to depth / particle size / flow velocity / impoundment of Three Gorges Project

引用本文

导出引用
陈钢,程和琴. 长江下游河道河床阻力分布特征及影响因素分析[J]. 长江科学院院报. 2019, 36(8): 10-16 https://doi.org/10.11988/ckyyb.20171273
CHEN Gang, CHENG He-qin. Riverbed Resistance in the Lower Reach of Yangtze River: Distribution Characteristics and Influencing Factors[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(8): 10-16 https://doi.org/10.11988/ckyyb.20171273
中图分类号: U615.1   

参考文献

[1] 钱 宁. 泥沙运动力学. 北京:科学出版社, 1983.
[2] 钟 亮, 许光祥. 河床阻力研究综述. 重庆交通大学学报(自然科学版), 2011, 30(5):1004-1008.
[3] 钱 宁, 洪柔嘉, 麦乔威,等. 黄河下游的糙率问题. 泥沙研究, 1959(1):3-17.
[4] 张 利, 王德中, 时文博,等. 黄河下游复式河槽高村(四)站的河床阻力分布特性分析. 水文, 2010, 30(5):46-48.
[5] 黄才安, 严 恺. 动床阻力的研究进展及发展趋势. 泥沙研究, 2002(4):75-80.
[6] BAJORUNAS L. Discussion of River Channel Roughness. Transactions of ASCE, 1952, 117: 1140-1142 .
[7] VAN RIJN L C. Equivalent Roughness of Alluvial Bed. Journal of the Hydraulics Division, 1982, 108(10):1215-1218.
[8] YALIN M S. Mechanics of Sediment Transport . Oxford: Pergamon Press, 1972.
[9] 李子君, 李秀彬. 近45年来降水变化和人类活动对潮河流域年径流量的影响. 地理科学, 2008, 28(6):809-813.
[10] 高华中, 姚亦锋. 近50年来人类活动对博斯腾湖水位影响的量化研究. 地理科学, 2005, 25(3):305-309.
[11] 吴小根, 王爱军. 人类活动对苏北潮滩发育的影响. 地理科学, 2005, 25(5):614-620.
[12] 郭晓泽. 水坝工程建设与生态保护的利弊关系分析. 长春:吉林大学, 2005.
[13] 杜景龙, 杨世伦. 长江口北槽深水航道工程对周边滩涂冲淤影响研究. 地理科学, 2007, 27(3):390-394.
[14] 徐晓君, 杨世伦, 张 珍. 三峡水库蓄水以来长江中下游干流河床沉积物粒度变化的初步研究. 地理科学, 2010, 30(1):103-107.
[15] YANG S L, ZHANG J, DAI S B, et al. Effect of Deposition and Erosion within the Main River Channel and Large Lakes on Sediment Delivery to the Estuary of the Yangtze River. Journal of Geophysical Research Earth Surface, 2007, 112(F2):111-119.
[16] 王张峤. 三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究. 上海:华东师范大学, 2006.
[17] 陈吉余, 恽才兴, 徐海根,等. 两千年来长江河口发育的模式. 海洋学报, 1979, 1(1):103-111.
[18] YANG S L, MILLIMAN J D, LI P,et al. 50,000 Dams Later: Erosion of the Yangtze River and Its Delta. Global & Planetary Change, 2011, 75(1/2):14-20.
[19] 石盛玉,程和琴,郑树伟,等. 三峡截流以来长江洪季潮区界变动河段冲刷地貌. 海洋学报,2017,39(3):85-95.
[20] LOVERA F, KENNEDY J F.Friction Factors for Flat Bed Flows in Sand Channels. Journal of the Hydraulics Division, 1969, 95(4):1227-1234.
[21] WILSON K C. Mobile Bed Friction at High Shear Stress. Journal of Hydraulic Engineering, 1989, 115(6):825-830.
[22] 黄才安, 顾春锋. 动床沙粒阻力计算的研究. 水力发电学报, 2007, 27(6):53-57.
[23] VANONI V A, HWANG L S.Relation Between Bed Forms and Friction in Streams. Journal of the Hydraulics Division, 1967, 93(3): 121-144.
[24] 周鸿权, 李伯根, 顾裕兵,等. 椒江河口河床宽深比对水沙条件的响应分析. 海洋学研究, 2014, 32(4):69-75.
[25] 王张峤. 三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究. 上海:华东师范大学, 2006.
[26] 王 哲, 陈中原, 施雅风,等. 长江中下游(武汉—河口段)底床沙波型态及其动力机制. 上海:华东师范大学, 2007.

基金

国家自然科学基金项目(41476075);
国家自然科学基金中荷英项目(51761135023);
中国地质调查局项目(DD20160246)

PDF(2535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/