为了对低热硅酸盐水泥胶凝体系力学和热学综合性能进行评价,从而为低热水泥在大体积混凝土中的应用提供参考,以胶凝材料不同龄期抗压强度、抗折强度和水化热为指标,通过限定上限/下限线性计算规则建立评价目标函数,计算不同矿物掺合料下的低热水泥胶凝体系综合性能满意度,并绘制满意度等值线图。研究结果表明:低热水泥胶凝体系综合性能满意度等值线分布可以近似看作系列同心椭圆线;粉煤灰掺量在区间、矿渣粉掺量在区间范围内其综合性能满意度较高,具备较好的早强低热性能。该性能评价函数以及满意度等值线图的联合运用,为复合胶凝材料体系力学及热学综合性能评价提供了新的思路。
Abstract
The mortar strength and hydration heat in different ages of low-heat cement material are investigated and an evaluation function of its mechanical and thermal properties is established by limited upper (or lower) bound linear rule to provide reference for the application of low-heat cement to mass concrete. On this basis, the satisfaction on the comprehensive performance of cementitious materials is calculated to draw a satisfaction contour map. Research results show that: the contours of satisfaction on comprehensive performance of low-heat cement cementitious system can be approximated as a series of concentric elliptical lines, and the cementitious material system with fly ash content in and slag content in has high comprehensive performance for lower hydration heat and higher strength. The combination of evaluation function and satisfaction contour map provides a new idea for the comprehensive performance evaluation of composite cementitious material system.
关键词
低热水泥 /
复合胶凝材料 /
评价目标函数 /
综合性能 /
水化热 /
掺合料
Key words
low heat Portland cement /
compound cementitious material /
objective function for evaluation /
comprehensive performance /
hydration heat /
mineral admixtures
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓铭江, 周小兵,石 泉. 严寒地区混凝土坝工技术及工程实践. 北京: 中国水利水电出版社, 2016: 240-244.
[2] 朱伯芳. 大体积混凝土的温度应力与温度控制.2版. 北京: 中国水利水电出版社, 2012: 1-8.
[3] DE FREITAS J A T, CUONG P T, FARIA R,et al. Modelling of Cement Hydration in Concrete Structures with Hybrid Finite Elements. Finite Elements in Analysis and Design, 2013, 77(3): 16-30.
[4] 朱鹏飞, 宫经伟, 唐新军. 大体积混凝土胶凝材料体系水化放热规律研究. 长江科学院院报, 2018, 35(6): 111-116.
[5] 樊启祥, 杨华全, 李文伟, 等. 两种低热与中热硅酸盐水泥混凝土热力学特性对比分析. 长江科学院院报, 2018, 35(12): 133-137.
[6] 李金玉,彭小平, 曹建国, 等. 高贝利特水泥低热高抗裂大坝混凝土性能的研究. 硅酸盐学报,2004, 32(3):364-371.
[7] 王显斌,文寨军. 低热硅酸盐水泥及其在大型水电工程中的应用. 水泥,2014, 41(11):22-25.
[8] 侯新凯,董跃斌,薛 博, 等. 低热钢渣矿渣硅酸盐水泥的研制(Ⅱ):低水化热优势配料方案和水泥最佳综合性能区. 硅酸盐通报, 2014,33(11):2802-2808.
[9] 瞿立新,周宜红,黄耀英, 等. 混凝土大坝温度状态的多目标模糊综合评价. 河海大学学报(自然科学版),2012,40(6):641-647.
[10] 隋同波,刘克忠,王 晶, 等. 高贝利特水泥的性能研究. 硅酸盐学报,1999, 27(4):106-110.
[11] DHIR R K, ZHENG L. Measurement of Early-age Temperature Rises in Concrete Made with Blended Cements. Magazine of Concrete Research, 2008, 60(2): 109-118.
[12] GB 200—2003, 中热硅酸盐水泥 低热硅酸盐水泥 低热矿渣硅酸盐水泥. 北京:中国标准出版社,2003.
[13] GB/T 17671—1999, 水泥胶砂强度检验方法(ISO法). 北京:中国标准出版社,1999.
[14] GB/T 12959—2008, 水泥水化热测定方法. 北京:中国标准出版社,2008.
基金
国家自然科学基金项目(51641906,51869031)