连续微弯弯道水力特性试验及模拟研究

罗平安, 李觅

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (1) : 55-59.

PDF(3285 KB)
PDF(3285 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (1) : 55-59. DOI: 10.11988/ckyyb.20171098
水力学

连续微弯弯道水力特性试验及模拟研究

  • 罗平安1,2, 李觅3
作者信息 +

Hydraulic Characteristics of Continuous Micro-bend Channel: Flume Experiment and Numerical Simulation

  • LUO Ping-an1,2, LI Mi3
Author information +
文章历史 +

摘要

为了研究河流的连续微弯弯道水力特性,通过建立曲折系数为1.07的连续弯道模型进行试验,并利用Reynolds应力模型进行模拟计算,从水面线、流速场、弯道环流及强度等方面研究了小曲折系数连续弯道水力特性。结果表明:Reynolds应力模型能够较好地模拟连续弯道水流;在同一断面,近凸岸的纵向流速垂线分布接近对数流速分布,近凹岸的纵向流速垂线分布呈随相对水深增大而先增大后减小的规律,呈现“凸肚”形;在弯道环流方面,呈现非对称的双环流结构;水面和槽底处的环流强度大于水体中部,凹岸的环流强度大于凸岸的环流强度。成果为研究小曲折系数弯道的河流水力特性提供了借鉴与参考。

Abstract

The hydraulic characteristic of continuous micro-bend channel was researched on a continuous bend physical model with sinuosity of 1.07 and Reynolds stress model. The water line, flow velocity field, circulating flow in bend channels, and intensity were examined. Reynolds stress model is proved well simulates the flow in continuous bend. In a given section, the vertical longitudinal velocity distribution in the adjacent of convex bank approached to logarithmic distribution, while the vertical longitudinal velocity adjoining concave bank displayed a bulging shape, increasing firstly and then decreasing with the growth of relative water depth. Circulating flow in bends displayed asymmetric double circulation structure, with the flow intensity larger in the surface and bottom of flume than that in the central part, and larger at concave bank than that at convex bank.

关键词

连续微弯弯道 / 曲折系数 / 水力特性 / 水流试验 / 环流强度

Key words

micro-bend continuous channel / sinuosity / hydraulic characteristics / flume experiment / circulating flow intensity

引用本文

导出引用
罗平安, 李觅. 连续微弯弯道水力特性试验及模拟研究[J]. 长江科学院院报. 2019, 36(1): 55-59 https://doi.org/10.11988/ckyyb.20171098
LUO Ping-an, LI Mi. Hydraulic Characteristics of Continuous Micro-bend Channel: Flume Experiment and Numerical Simulation[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(1): 55-59 https://doi.org/10.11988/ckyyb.20171098
中图分类号: TV142   

参考文献

[1] 陈启刚, 钟 强, 李丹勋, 等. 明渠弯道水流平均运动规律试验研究[J]. 水科学进展, 2012, 23(3): 369-375.
[2] DE VRIEND H J. A Mathematical Model of Steady Flow in Curved Shallow Channels[J]. Journal of Hydraulic Research, 1977, 15(1): 37-54.
[3] 李义天,谢鉴衡.冲积平原河流平面流动的数值模拟[J].水利学报,1986,(11):14-20.
[4] 董耀华.弯道水流的基本特性及数值模拟[J].长江科学院院报,1996,13(1):25-29.
[5] 杨燕华, 白玉川. 连续弯道水流运动的三维数值模拟[J]. 泥沙研究, 2012, (6): 46-49.
[6] STOESSER T, RUETHER N, OLSEN N R B. Calculation of Primary and Secondary Flow and Boundary Shear Stresses in a Meandering Channel[J]. Advances in Water Resources, 2010, 33(2): 158-170.
[7] 陈翠霞.弯曲及顺直型河道水流三维数值模拟研究[D].武汉:武汉大学,2011.
[8] CHEN D, TANG C. Evaluating Secondary Flows in the Evolution of Sine-generated Meanders[J]. Geomorphology, 2012, 163: 37-44.
[9] 童思陈,高 建,许光祥. 弯道水流纵向垂线平均流速分布的计算[J]. 重庆交通大学学报(自然科学版),2009,28(1):126-129.

基金

湖北省自然科学基金重点类项目(2016CFA092);国家重点研发计划项目(2016YFC0502201);国家自然科学基金项目(51379155);中央级公益性科研院所基本科研业务费项目(CKSF2017047/SH)

PDF(3285 KB)

Accesses

Citation

Detail

段落导航
相关文章

/