基于粒径和 137Cs的三峡水库消落带泥沙来源示踪研究

王彬俨,严冬春

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (6) : 146-153.

PDF(1843 KB)
PDF(1843 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (6) : 146-153. DOI: 10.11988/ckyyb.20171063
第十届全国泥沙基本理论研究学术研讨会专栏

基于粒径和 137Cs的三峡水库消落带泥沙来源示踪研究

  • 王彬俨1,严冬春2
作者信息 +

Sediment Sources Tracing in Riparian Zone Based on Grain Size Distribution and 137Cs Activity in the Three Gorges Reservoir

  • WANG Bin-yan1, YAN Dong-chun2
Author information +
文章历史 +

摘要

为分析三峡水库消落带泥沙输移与沉积规律,采用原位观测方法,沿库岸H=148 m高程带选择15个采样点,并甄选出3个典型断面采集沉积泥沙样品,利用激光粒度仪和γ能谱仪分别测试样品的粒径与 137Cs活度,分析二者在水平和高程2个维度的变化特征,探讨消落带沉积泥沙来源。结果表明①三峡水库消落带沉积物的中值粒径(D50)沿水流方向逐渐降低,并在忠县任家镇及其下游河段基本保持稳定,而 137Cs活度沿水流方向逐渐增大,但在任家镇及其下游河段仍有波动。②消落带邻江区域沉积物的粒径最粗、 137Cs活度最低,除这一区域外,沉积物粒径沿高程的变化取决于消落带上方坡面的土壤侵蚀状况,若上方存在侵蚀,沉积物粒径随高程的增加而增大,若上方微弱侵蚀或无侵蚀,则沉积物粒径随高程的增加而降低,但 137Cs活度不受上方土壤侵蚀状况影响,均表现为随高度增加先降后升的变化趋势。③粗颗粒与细颗粒沉积物具有不同的来源特征,变动回水区的粗颗粒也主要源于金沙江和嘉陵江,乌江入库的粗颗粒主要沉积在涪陵至忠县任家镇河段,任家镇下游的粗颗粒主要源于库区内侵蚀产沙;变动回水区的细颗粒主要源于金沙江和嘉陵江,常年库区的细颗粒泥沙来源较多,金沙江、嘉陵江、乌江和库区内侵蚀产沙均存在明显贡献,而库水位涨落过程中的波浪侵蚀对沉积物存在再分配作用,它能使表层沉积物重新进入水体,并在较低的位置实现二次沉积。

Abstract

Sediment source is an important information that connects particles from hill slopes and small watersheds to river channels. In order to reveal the basic law of sediment transport and deposition in the riparian zone of the Three Gorges Reservoir, we investigated the horizontal and vertical variation of particle size distribution and 137Cs activity among sediment samples collected in the study area, and analyzed the implication of such variations on sediment sources. Results showed that median particle size (D50) of sediments gradually became finer along the flow direction and stabilized in general in Zhongxian County and its lower reach; while the 137Cs activity of sediment samples rose along the flow direction but was not as stable as particle size in the downstream of Zhongxian County. Sediments collected around H=148 m had the largest particle size and the lowest 137Cs activity compared to samples from other altitudes. Except for this river-adjacent area, particle size grew larger with the increase of altitude when the soil could be eroded easily in the upper hill slope; on the contrary, particle size became smaller with the increase of altitude when the upper hill slope was used for forest, indicating slight soil erosion. Therefore, vertical variation of particle size was greatly influenced by the land use of the hill slope above the riparian zone. In contrast, vertical variation of 137Cs activity in three sampling transects were all falling at first and rising later with the increase of altitude despite the different land use of upper hill slope. On the basis of these variations, it could be judged that sediment deposited at the riparian zone in the fluctuant backwater area was sourced mostly from the Jinsha River and the Jialing River. In the permanent backwater area, coarse sediment with a grain diameter ≥62 μm in the riparian zone had distinct sources compared to fine sediment whose grain diameter was <62 μm. Coarse sediments from the Wujiang River deposited at the reach from Fuling to Renjia. In the reach from Renjia to the Three Gorges Dam, coarse deposited sediment sourced dominantly from soil erosion in the tributaries within the Three Gorges Reservoir basin. All potential sources including the Jinsha River, the Jialing River, the Wujiang River and soil erosion within the basin all showed significant contributions to the fine sediments in the permanent backwater area. In addition, wave erosion redistributed deposited sediments. Surface particles could be eroded into the water and deposit on the locations with lower altitudes.

关键词

泥沙来源 / 示踪研究 / 粒径 / 137Cs / 消落带 / 三峡水库

Key words

sediment sources / tracing analysis / particle size / cesium-137 / riparian zone / the Three Gorges Reservoir

引用本文

导出引用
王彬俨,严冬春. 基于粒径和 137Cs的三峡水库消落带泥沙来源示踪研究[J]. 长江科学院院报. 2018, 35(6): 146-153 https://doi.org/10.11988/ckyyb.20171063
WANG Bin-yan, YAN Dong-chun. Sediment Sources Tracing in Riparian Zone Based on Grain Size Distribution and 137Cs Activity in the Three Gorges Reservoir[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(6): 146-153 https://doi.org/10.11988/ckyyb.20171063
中图分类号: TV145    S152.3    S124.2   

参考文献

[1] HUPP C R, OSTERKAMP W R. Riparian Vegetation and Fluvial Geomorphic Processes. Geomorphology, 1996, 14(4): 277-295.
[2]中国工程院三峡工程阶段性评估项目组. 三峡工程阶段性评估报告. 北京: 中国水利水电出版社, 2010.
[3]程瑞梅, 王晓荣, 肖文发, 等. 消落带研究进展. 林业科学, 2010, 46(4): 111-119.
[4]黄 川, 谢红勇, 龙良碧. 三峡湖岸消落带生态系统重建模式的研究. 重庆教育学院学报, 2003,16(3): 63-66.
[5]SHI C X, PETTS G, GURNELL A. Bench Development along the Regulated, Lower River Dee, UK. Earth Surface Processes and Landforms, 1999, 24(2): 135-149.
[6]STEIGER J, GURNELL A M, PETTS G E. Sediment Deposition along the Channel Margins of a Reach of the Middle River Severn, UK. Regulated Rivers:Research & Management, 2001, 17(4/5): 443-460.
[7]STEIGER J, GURNELL A M, ERGENZINGER P, et al. Sedimentation in the Riparian Zone of an Incising River. Earth Surface Processes and Landforms, 2001, 26(1): 91-108.
[8]STEIGER J, GURNELL A M. Spatial Hydrogeomorphological Influences on Sediment and Nutrient Deposition in Riparian Zones: Observations from the Garonne River, France. Geomorphology, 2003, 49(1/2): 1-23.
[9]PINAY G, RUFFINONI C, FABRE A. Nitrogen Cycling in Two Riparian Forest Soils under Different Geomorphic Conditions. Biogeochemistry, 1995, 30(1): 9-29.
[10]F RSTNER U, WITTMANN G T W. Metal Pollution in the Aquatic Environment. Berlin: Springer, 1981.
[11]COOPER C M. Biological Effects of Agriculturally Derived Surface-Water Pollutants on Aquatic Systems—A Review. Journal of Environmental Quality, 1993, 22(3): 402-408.
[12]NILSSON C, GRELSSON G. The Effects of Litter Displacement on Riverbank Vegetation. Canadian Journal of Botany, 1990, 68(4): 735-741.
[13]NILSSON C, GARDFJELL M, GRELSSON G. Importance of Hydrochory in Structuring Plant-Communities Along Rivers. Canadian Journal of Botany, 1991, 69(12): 2631-2633.
[14]TICKNER D P, ANGOLD P G, GURNELL A M, et al. Riparian Plant Invasions: Hydrogeomorphological Control and Ecological Impacts. Progress in Physical Geography, 2001, 25(1): 22-52.
[15]许炯心. 黄河中游支流悬移质粒度与含沙量、流量间的复杂关系. 地理研究, 2003, 22(1): 39-48.
[16]ZHANG X, BAI X, LIU X. Application of a 137Cs Fingerprinting Technique for Interpreting Responses of Sediment Deposition of a Karst Depression to Deforestation in the Guizhou [17]Plateau, China. Science China:Earth Sciences, 2011, 54(3): 431-437.
[18]WALING D E, QUINE T A. Use of 137Cs Measurements to Investigate Soil-erosion on Arable Fields in the UK—Potential Applications and Limitations. Journal of Soil Science, 1991, 42(1): 147-165.
[19]郭 进, 文安邦, 严冬春, 等. 复合指纹识别技术定量示踪流域泥沙来源. 农业工程学报, 2014, 30(2): 94-104.
[20]王彬俨, 严冬春, 文安邦, 等. 三峡水库干流消落带沉积泥沙粒径特征及其物源意义. 长江流域资源与环境, 2016, 25(9): 1421-1429.
[21]谢德体, 范小华, 魏朝富. 三峡水库消落区对库区水土环境的影响研究. 西南大学学报(自然科学版), 2007, 29(1): 39-47.
[22]唐 敏, 杨春华, 雷 波. 基于GIS的三峡水库不同坡度消落带分布特征. 三峡环境与生态, 2013, 35(3): 8-10.
[23]张 虹. 三峡重庆库区消落区基本特征与生态功能分析. 长江流域资源与环境, 2008, 17(3): 374-378.
[24]唐 强. 三峡水库干流典型消落带沉积泥沙物源示踪. 北京:中国科学院研究生院, 2014.
[25]李文杰, 杨胜发, 付旭辉, 等. 三峡水库运行初期的泥沙淤积特点. 水科学进展, 2015, 26(5): 676-685.
[26]阎丹丹, 鲍玉海, 贺秀斌, 等. 三峡水库蓄水后长江干支流及消落带泥沙颗粒特征分析. 水土保持学报, 2014, 28(4): 289-292.
[27]郭 进, 文安邦, 严冬春, 等. 三峡库区紫色土坡地土壤颗粒流失特征. 水土保持学报, 2012, 26(3): 18-21.
[28]白厚义. 试验方法及统计分析. 北京: 中国林业出版社, 2005.
[29]魏 丽, 卢金友, 刘长波. 三峡水库蓄水后长江上游水沙变化分析. 中国农村水利水电, 2010, (6): 1-4.

基金

国家重点研发计划项目(2016YFC0402301);国家自然科学基金重点项目(4143000411)

PDF(1843 KB)

Accesses

Citation

Detail

段落导航
相关文章

/