为提升海绵城市建设和运行过程中雨水的利用率,提出了一种雨水入渗渗井装置,并对雨水入渗效果进行了验证。在黏土场地竖向开挖一定深度的渗井孔,并用中粗砂填满,即形成一种雨水入渗装置。利用原位试验对渗井场地中土体的渗流情况进行了测定,得到了入渗过程中不同时刻土体的饱和度。依据数值分析软件ABAQUS对原始黏土场地和设有砂石渗井的黏土场地分别进行了数值模拟,获取了入渗过程中不同时刻土体的饱和度模拟值。将原始场地的饱和度模拟值和设有砂石渗井场地的饱和度模拟值进行了比较,并将在设置渗井的场地进行的原位试验得到的饱和度实测值与ABAQUS计算出的饱和度模拟值进行了对比。研究结果表明:砂石渗井能大幅增加土体的入渗量,且靠近渗井的土体水分入渗量较原始场地平均增长率达到了67.21%;砂石渗井增加入渗的效果随土体深度和距渗井轴心距离的降低而增加。该研究成果期望为海绵城市的建设提供参考。
Abstract
In the aim of improving the utilization rate of rainwater in the construction and operation of sponge city, a rainwater infiltration device was proposed and its effect on increasing infiltration was verified. The rainwater infiltration device was formed via digging an infiltration well in clayey soil ground and filling the well with coarse sand. The seepage in the infiltration well was measured through in-situ test device, and the saturation degree of soil at different times during infiltration was obtained. In the meantime, the original clay site and the clay ground equipped with sand well were simulated in ABAQUS, which provided us the simulated values of saturation degree of soil at different instances in the process of infiltration. Moreover, the test values and simulation values were compared, and the simulated values between original clay site and clay site equipped with infiltration well were further compared. Results demonstrated that sand infiltration well could augment the infiltration capacity of soil by a large margin, and the average growth rate of water infiltration of soil near the infiltration well reached 67.21%. In addition, the effect of infiltration was increased along with the decrease of depth and the distance from the axis of infiltration well.
关键词
海绵城市 /
雨水入渗装置 /
封闭孔隙 /
原位试验 /
渗井 /
渗流场
Key words
sponge city /
rainwater infiltration device /
closed pores /
in-situ tests /
infiltration well /
seepage field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡 楠,李 雄,戈晓宇.因水而变——从城市绿地系统视角谈对海绵城市体系的理性认知[J].中国园林,2015,31(6): 652-658.
[2] XIA Jun, ZHANG Yong-yong, XIONG Li-hua, et al. Opportunities and Challenges of the Sponge City Construction Related to Urban Water Issues in China[J]. Science China Earth Sciences. 2017, 60(4): 1-4.
[3] GB 50400—2006,建筑与小区雨水利用工程技术规范[S].北京:中国建筑工业出版社,2006.
[4] 李 勇,林 缅,张召彬.热-流-固耦合渗流的数学模型及其应用[J].水动力学研究与进展A辑,2015,30(1):56-63.
[5] 李 杰,李 强.地下工程渗流场有限元模拟研究[J].地质力学学报,2001,7(3):271-277.
[6] 徐 洪,马云东.各向异性土体中渗透系数的讨论[J].矿山压力与顶板管理,2005,(1):104-108..
[7] 师文豪,杨天鸿,于庆磊,等.层状边坡各向异性岩体渗流-应力耦合模型及工程应用[J].岩土力学,2015,36(8): 2353-2360.
[8] 王兴超.基于海绵城市理论的地下水库工程设计[J]. 长江科学院院报, 2018, 35(8):34-39.
[9] 李顺群,贾红晶,王杏杏,等.轴平移技术在基质吸力测控中的局限性和误差分析[J].岩土力学,2016,37(11): 3089-3095,3252.
[10]艾智勇,董 洲,成怡冲,等.三维渗透各向异性层状地基Biot固结分析[J].土木工程学报,2011,44(12):79-84.
[11]冯慧强.K0固结土的各向异性及屈服面研究[D].天津: 天津城建大学,2016.
[12]刘小龙.土的不同渗透试验方法应用与研究[J].勘察科学技术,2011,(3):36-39.
[13]朱 希.建筑垃圾渗井在海绵城市中的应用与研究[D].天津:天津城建大学,2016.
[14]李 堃,李建设,吴素萍,等.基于实时控制灌溉系统的温室黄瓜土壤水分传感器合理埋设位置研究[J].灌溉排水学报, 2015,34(7):18-23.
[15]宗 睿,徐飞鹏,贾瑞卿,等.一种土壤水分传感器性能测试的方法及应用[J].灌溉排水学报,2013,32(1):74-76.
[16]魏恒文,陈希东,尹明玉,等.智能滴灌系统中土壤水分传感器埋设深度研究[J].灌溉排水学报,2010,29(4):16-20.
[17]崔宇龙,黄 涛,彭道平,等.川西高原某水库坝址区渗流场模拟及渗漏量计算[J].水资源与水工程学报,2014,25(5): 51-54.
[18]陈卫忠,王莉莉,邵建富,等.粘土岩非饱和渗流模型在地下水运移过程中的数值模拟[J].岩石力学与工程学报, 2003,22(增1):2308-2312.
[19]王亚军,张我华,陈合龙.长江堤防三维随机渗流场研究[J].岩石力学与工程学报, 2007,26(9):1824-1831.
[20]刘红岩,王媛媛,秦四清.降雨条件下的基坑边坡渗流场模拟[J].工业建筑, 2007,37(10):50-53.
基金
国家自然科学基金项目(41472253);天津市自然科学基金重点项目(16JCZDJC39000);天津市建设系统科学技术项目发展计划项目(2016-25);天津市建设工程技术研究所2017年财政资金项目(JGY18-01)