压实黄土非饱和增湿变形过程及其微观机制

邵显显,张虎元,何东进,苏振妍,张国超

长江科学院院报 ›› 2019, Vol. 36 ›› Issue (4) : 82-87,92.

PDF(2722 KB)
PDF(2722 KB)
长江科学院院报 ›› 2019, Vol. 36 ›› Issue (4) : 82-87,92. DOI: 10.11988/ckyyb.20170914
岩土工程

压实黄土非饱和增湿变形过程及其微观机制

  • 邵显显1,张虎元1,2,何东进1,苏振妍1,张国超1
作者信息 +

Unsaturated Wetting Deformation Behavior and Fabric Change of Compacted Loess

  • SHAO Xian-xian1, ZHANG Hu-yuan1,2, HE Dong-jin1, SU Zhen-yan1, ZHANG Guo-chao1
Author information +
文章历史 +

摘要

为了研究黄土的非饱和增湿变形特性,对不同压实度的黄土分别进行分级浸水的增湿变形试验,对其从非饱和状态增湿至饱和过程中的变形特性进行对比研究,提出了压实黄土增湿变形的临界孔隙比。通过扫描电镜试验(SEM)和压汞试验(MIP),分析了压实黄土的增湿变形特性与其微观结构之间的关系。结果表明:竖向应力条件下,当压实黄土的初始孔隙比大于临界孔隙比时,孔隙比将随饱和度增大呈指数函数递减,并趋向于临界孔隙比;当压实黄土的初始孔隙比小于临界孔隙比时,孔隙比随饱和度增大不变。压实度为70%时,黄土内部具有大量大于颗粒尺寸的大孔隙,增湿变形较强;压实度达到90%时,黄土内部孔隙尺寸远小于大部分颗粒尺寸,增湿变形很弱。在水力耦合作用下,压实度为70%的黄土的孔隙结构变化很大,颗粒边角相互摩擦变圆,颗粒排列定向性明显加强;而压实度为90%的黄土的孔隙结构变化较小,集粒内部弱胶结作用的破坏使颗粒更趋于棱角状,颗粒排列定向性无明显变化。研究结果为明确黄土的增湿变形机制提供了参考。

Abstract

To investigate the unsaturated wetting deformation of loess, staged water-saturation test is conducted on loess specimens of different compactness degrees. The critical void ratio for the wetting deformation of compacted loess is proposed by comparing the deformation behaviors of loess among different stages from unsaturated to saturated state. In addition, scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) are adopted to analyze the correlation between wetting deformation behavior and microstructure evolution. Results are concluded as follows: 1) under a constant vertical pressure, the void ratio of loess specimen decreases exponentially with the rising of saturation degree and finally reduces to the critical void ratio when its corresponding initial void ratio is greater than critical void ratio; while when initial void ratio is lower than critical void ratio, void ratio exhibits no change. 2) When the compactness degree is 70%, strong wetting deformation is resulted from large amounts of inner pores with sizes larger than most particle sizes, while loess with a compactness of 90% presents an opposite trend. 3) Under loading and wetting actions, the pore structure of loess with a compactness of 70% varies significantly, with particles getting rounded and particles’ predominant orientation reinforced; while for loess with a compactness of 90%, the pore structure changes slightly with no obvious change in particles’ predominant orientation, and particles tend to be angular due to the weak cementation among particles.

关键词

压实黄土 / 非饱和 / 增湿变形 / 临界孔隙比 / 微观结构

Key words

compacted loess / unsaturated / wetting deformation / critical void ratio / microstructure

引用本文

导出引用
邵显显,张虎元,何东进,苏振妍,张国超. 压实黄土非饱和增湿变形过程及其微观机制[J]. 长江科学院院报. 2019, 36(4): 82-87,92 https://doi.org/10.11988/ckyyb.20170914
SHAO Xian-xian, ZHANG Hu-yuan, HE Dong-jin, SU Zhen-yan, ZHANG Guo-chao. Unsaturated Wetting Deformation Behavior and Fabric Change of Compacted Loess[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(4): 82-87,92 https://doi.org/10.11988/ckyyb.20170914
中图分类号: TU443   

参考文献

[1] 刘东生. 中国的黄土堆积. 北京: 科学出版社,1965.
[2] ZHANG Zong-hu. Loess in China. GeoJournal, 1980, 4(6): 525-540.
[3] ZHANG Li-min, YU Xue-ming, HU Ting. Optimization of Compaction Zoning in Loess Embankments. Canadian Geotechnical Journal, 1998, 35(4): 611-621.
[4] 黄雪峰, 孔 洋, 李旭东,等. 压实黄土变形特性研究与应用. 岩土力学, 2014, 35(增2): 37-44.
[5] 张茂花, 谢永利, 刘保健. 增 (减) 湿时黄土的湿陷系数曲线特征. 岩土力学, 2005, 26(9): 1363-1368.
[6] 高 帅, 骆亚生, 胡海军, 等. 非饱和原状黄土增湿条件下力学特性试验研究. 岩土工程学报, 2015, 37(7): 1313-1318.
[7] 谢定义. 黄土力学特性与应用研究的过去、现在与未来. 地下空间, 1999, 19(4): 273-286.
[8] 张登飞, 陈存礼, 杨 炯,等. 侧限条件下增湿时湿陷性黄土的变形及持水特性. 岩石力学与工程学报, 2016, 35(3): 604-612.
[9] 罗爱忠, 邵生俊, 陈昌禄,等. 基于综合结构势的结构性黄土双硬化参数模型. 长江科学院院报, 2013, 30(9): 59-63.
[10] HOUSTON S L, HOUSTON W N, SPADOLA D J. Prediction of Field Collapse of Soils due to Wetting. Journal of Geotechnical Engineering, 1988, 114 (1): 40-58.
[11] ROGERS C D F, DIJKSTRA T A, SMALLEY I J. Hydro-consolidation and Subsidence of Loess: Studies from China, Russia, North America and Europe. Engineering Geology, 1994, 37(2): 83-113.
[12] 高国瑞. 中国黄土的微结构. 中国科学(A辑), 1980, (12): 1203-1208.
[13] 雷祥义. 中国黄土的孔隙类型与湿陷性. 中国科学(B辑), 1987, (12): 48-54.
[14] LIN Z, LIANG W. Engineering Properties and Zoning of Loess and Loess-like Soils in China. Canadian Geotechnical Journal, 1982,19(1):76-91.
[15] 王常明, 林 容, 陈多才,等. 辽西黄土湿陷变形特性及湿陷后微观结构变化. 吉林大学学报(地球科学版), 2011, 41(2): 471-477.
[16] 方祥位, 申春妮, 李春海, 等. 陕西蒲城黄土微观结构特征及定量分析. 岩石力学与工程学报, 2013, 32(9): 1917-1925.
[17] GB/T 50123—1999, 土工试验方法标准. 北京: 中国计划出版社, 1999: 132.
[18] JIANG M, ZHANG F, HU H, et al. Structural Characterization of Natural Loess and Remolded Loess under Triaxial Tests. Engineering Geology, 2014, 181: 249-260.
[19] 沙爱民,陈开圣. 压实黄土的湿陷性与微观结构的关系. 长安大学学报(自然科学版), 2006, 26(4): 1-4.
[20] 吴义祥.工程粘性土微观结构的定量评价.中国地质科学院学报,1991,12(2):143-151.

基金

教育部博士点基金项目(20110211110025)

PDF(2722 KB)

Accesses

Citation

Detail

段落导航
相关文章

/