为了改善闸站结合工程的泵站前池流态,采用计算流体力学(CFD)对闸站结合式泵站前池流态进行数值模拟,研究了开孔导流墩的长度、开孔宽度、相邻的孔口中心间距及开孔高度等因素对泵站前池流态的影响。结果表明:选择合适长度的导流墩能改善闸站结合工程的泵站流道进口的不良流态;在优选的长度下,进行导流墩不同开孔几何参数的对比计算,发现开孔导流墩长度为8.62D(D为水泵叶轮的直径)、开孔宽度为1.55D、相邻的孔口中心间距为2.16D、开孔高度为0.66h(h为前池水深)时,相比于其他几何参数的开孔导流墩,前池内流态能得到更好的改善,水泵入口流速分布更均匀,漩涡综合影响函数更低;CFD计算结果与模型试验结果基本吻合,研究成果可为闸站结合工程选择合适的导流墩提供参考。
Abstract
The flow field in the forebay of sluice-pump station combination project is simulated via computational fluid dynamics (CFD) to investigate the influences of geometric parameters of perforated diversion pier, including pier length, orifice width, distance between the center of adjacent two orifices, and the height of the opening, on the flow pattern in the forebay. Results suggest that an appropriate length of the diversion pier could improve the flow pattern at the inlet of the pumping station. At a preferred length together with the following conditions (length of diversion pier: 8.62D (D represents the diameter of water pump impleller); orifice width: 1.55D; distance between the center of adjacent two orifices: 2.16D; height of opening: 0.66h (h stands for the water depth of the forebay)), the flow pattern in the forebay is improved better than that under other geometrical parameters, the flow velocity distribution at the inlet is more uniform, and the whirlpool combined effect function becomes lower. CFD calculation results are in agreement with model test results, hence could offer reference for selecting proper diversion pier for sluice-pump station project.
关键词
闸站结合工程 /
前池流态 /
开孔导流墩 /
几何参数 /
整流措施
Key words
sluice-pump station combination project /
flow pattern in forebay /
perforated diversion pier /
geometric parameters /
flow rectification measures
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 严忠民,蒋传丰,周春天,等. 侧向进水前池水流特性的试验研究[J].河海大学学报,1991,19(5): 49-54.
[2] 刘 超,韩 旭,周济人,等. 泵站侧向进水引河段三维紊流数值模拟[J].排灌机械,2009,27(5): 281-286.
[3] 罗 灿,成 立,刘 超. 泵站正向进水前池底坎整流机理数值模拟[J].排灌机械工程学报,2014,32(5): 393-398.
[4] 高传昌,刘新阳,石礼文,等. 泵站前池与进水池整流方案数值模拟[J].水力发电学报,2011,30(2):54-59.
[5] 资 丹,王福军,姚志峰,等. 大型泵站进水流场组合式导流墩整流效果分析[J].农业工程学报,2015,31(16): 71-77.
[6] 傅宗甫,顾美娟,严忠民. 闸站合建枢纽导流墙体型及适宜长度[J].水利水电技术,2011,42(10): 128-131.
[7] 陆银军,周 伟,明月敏,等. 基于数值模拟的闸站结合布置优化设计[J].排灌机械工程学报,2014,32(11): 963-967.
[8] 罗 灿,钱 均,刘 超,等. 非对称式闸站结合式泵站前池导流墩整流模拟及试验验证[J].农业工程学报,2015,31(7): 100-108.
[9] TANWEER S,DESMUKH V,GAHLOT K.Numerical Study of Flow Behaviour in a Multiple Intake Pump Sump[J].International Journal of Advanced Engineering Technology, 2011, 11(11): 118-128.
[10] 杨 帆,金 燕,刘 超,等. 双向潜水贯流泵装置性能试验与数值分析[J].农业工程学报,2012,28(16): 60-67.
[11] 徐 磊,陆林广,陈 伟,等. 南水北调工程邳州站竖井贯流泵装置进出水流态分析[J].农业工程学报,2012,28(6):50-56.
[12] 陈松山,颜红勤,周正富,等. 泵站前置竖井进水流道三维湍流数值模拟与模型试验[J] .农业工程学报,2014,30(2): 63-71.
[13] KADAM P M, CHAVAN D S. CFD Analysis of Flow in Pumpsump to Check Suitability for Better Performance of Pump[J].International Journal on Mechanical Engineering and Robotics, 2013, 1(2): 56-65.
[14] 陆林广,曹志高,周济人,等. 开敞式进水池优化水力设计[J].排灌机械,1997,(4): 15-19.
基金
国家自然科学基金青年科学基金项目(51409227);江苏省博士后科研资助计划项目(1501115B);长江科学院开放研究基金资助项目(CKWV2016386/KY)