当前拓扑优化在水工闸门中的应用均为二维平面内的拓扑优化设计,未涉及闸门空间拓扑形式的问题。针对此,以某水电站工程深孔弧形钢闸门为例,基于连续体拓扑优化方法中的变密度法进行深孔弧门三维拓扑优化的应用研究,采用有限元软件对拓扑结果进行数值分析,并与工程中常用V型二支臂结构形式进行对比。结果表明采用三维拓扑优化得到的弧形闸门支臂最优拓扑构型为Y型树状结构,且在满足局部稳定要求前提下构建的箱型截面树状支臂结构承载能力满足规范要求。与规范中常用V型支臂结构进行对比分析,结果表明,拓扑优化的树枝状支臂结构整体位移减小15.8%,最大应力减小15%且整体分布更加均匀。三维拓扑优化方法可以应用于深孔弧形闸门的结构优化设计当中。
Abstract
At present, topology optimization of hydraulic gate all involves two-dimensional rather than spatial scale. In view of this, the simple isotropic material with penalization (SIMP) in continuum topology optimization method is adopted to the three-dimensional topology optimization of a deep orifice radial gate. Moreover, the topology result are simulated by finite element software, and are compared with the V-shaped dual-arm structure commonly used in engineering. The optimum topology design for radial gate arms is a tree structure, with the bearing capacity of the box section built under the requirements of local stability meeting specification standards. Comparison with V-shaped structure demonstrates that the tree structure obtained by topology optimization could reduce the holistic displacement by 15.8% and cut the maximum stress by 15% yet more evenly distributed.
关键词
深孔弧门 /
三维拓扑优化 /
变密度法 /
有限元分析 /
树状支臂结构
Key words
deep orifice radial gate /
three-dimensional topology optimization /
SIMP /
finite element analysis /
tree structure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SL 74—2013,水利水电工程钢闸门设计规范[S]. 北京:中国水利水电出版社,2013.
[2] 刘礼华, 曾又林, 段克让. 表孔三支腿弧门的优化分析和设计[J]. 水利学报, 1996, 2(7): 9-15.
[3] 练继建,李火坤. 基于SQP优化算法的露顶式弧形闸门主框架优化设计[J]. 水利水电技术, 2004, 35(9):63-66.
[4] 王正中. 关于大中型弧形钢闸门合理结构布置及计算图式的探讨[J], 人民长江, 1995, 26(1): 54-59.
[5] BENDSØE M P, KIKUCHI N. Generating Optimal Topologies in Structural Design Using a Homogenization Method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[6] 彭细荣,隋允康. 对连续体结构拓扑优化合理模型的再探讨[J]. 固体力学学报,2016,37(3):181-191.
[7] TONG Xin-xing, GE Wen-jie, SUN Chao,et al. Topology Optimization of Compliant Adaptive Wing Leading Edge with Composite Materials[J]. Chinese Journal of Aeronautics,2014, 27(6): 1488-1494.
[8] 陈艾荣,常 成,马如进. 结构拓扑优化理论及其在桥梁结构找型中的应用[J]. 同济大学学报 (自然科学版),2016, 44(5): 357-663.
[9] 朱军祚,王正中,方寒梅,等. 拓扑优化在大型弧形钢闸门优化布置中的应用[J]. 人民黄河, 2007, 29(6): 63-64.
[10]屈 超, 王正中, 朱军祚,等. 基于ANSYS的三支臂弧形钢闸门拓扑优化布置[J]. 人民长江, 2008, 29(6): 12-15.
[11]肖卫华. 拓扑优化理论及其在水工闸门优化设计中的应用[D]. 南京:河海大学, 2007.
[12]李旭东, 彭晓平. 拓扑优化理论在二维深孔弧形闸门设计应用中的研究[J]. 西北水电, 2008, 8(3): 54-56.
[13]麦麦提吐孙·库尔班. 拓扑优化理论在平面闸门优化设计中的应用[J].水利科技与经济, 2014,20(6):15-17.
[14]CAI Kun, ZHANG Chao. An Optimal Construction of a Hydropower Arch Gate[J]. Advanced Materials Research,2012, 1466(346):109-115.
[15]张 超,蔡 坤. 拓扑优化在新型弧形钢闸门设计中的应用研究[C]∥Altair 2010 HypersWorks 技术大会论文集, Shanghai, China,2010:1-15.
[16]CAI Kun, HE Hong-yang, LI Xin-huan,et al. A New Design of a Hydraulic Steel Radial Gate with Two Oblique Arms by Topology Optimization[J]. Advanced Materials Research,2013, 2450(712):2096-2912.
[17]闫 冬. 基于拓扑优化理论的大跨度三支座水工弧形钢闸门设计研究[D]. 杨凌:西北农林科技大学, 2015.