高碾压混凝土拱坝损伤振动响应特性

马斌, 赵钊, 胡剑超

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (10) : 131-136.

PDF(4456 KB)
PDF(4456 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (10) : 131-136. DOI: 10.11988/ckyyb.20170472
水工结构与材料

高碾压混凝土拱坝损伤振动响应特性

  • 马斌1, 赵钊1, 胡剑超2
作者信息 +

Vibration Response Properties of Damage of HighRoller Compacted Concrete Arch Dam

  • MA Bin1, ZHAO Zhao1, HU Jian-chao2
Author information +
文章历史 +

摘要

高碾压混凝土坝泄洪时,坝体的振动特征是反映其是否安全运行的重要指标。为探明高碾压混凝土坝的损伤振动响应特性,基于理论分析和数值模拟方法,以坝体典型裂缝和碾压成层结构为损伤性结构指标,对无损伤坝体、裂缝损伤坝体、成层损伤坝体和双损伤坝体的流激振动响应规律进行了对比分析。结果表明:碾压成层强度越低、碾压厚度越大、碾压层数越多,拱坝的流激振动响应越大。针对碾压成层和裂缝损伤建立4种不同的损伤模型,进行动力响应计算,得出:碾压成层结构以及裂缝结构,都会使得拱冠梁以及坝肩部位和损伤部位的动力响应增大;并且当同时存在2种损伤时,2种损伤还将相互影响,使得坝身的动位移进一步增大,对坝身安全最为不利。

Abstract

The vibration property of dam body is a significant indicator reflecting the security of high roller compacted concrete(RCC) dam under flood discharge. To reveal the response characteristics of damage vibration of high RCC dam, we analyzed and compared the regularities of flow-induced vibration response of dam body in conditions of no damage, crack damage, layered damage, and double damage via theoretical analysis and numerical simulation based on the theory of high RCC arch dam engineering and the damaged structural indicators of typical dam body cracks and layered RCC structures.Results showed that lower rolling layer strength, larger rolling thickness, and more rolling layers could exaggerate the vibration response. By establishing four damage models of different rolling layers and crack damages to analyze the dynamic response, we found that both layer structure and crack damage structure could expand the dynamic response on crown beam,abutment and the damaged sites, and in addition, affect each other in the presence of two patterns of damage,further boosting the dynamic displacement of the dam body, which is the most unfavorable for dam safety.

关键词

高碾压混凝土 / 拱坝 / 无损伤 / 裂缝损伤 / 成层损伤 / 双损伤 / 流激振动

Key words

high RCC / arch dam / no damage / crack damage / layered damage / double damage / flow-induced vibration

引用本文

导出引用
马斌, 赵钊, 胡剑超. 高碾压混凝土拱坝损伤振动响应特性[J]. 长江科学院院报. 2018, 35(10): 131-136 https://doi.org/10.11988/ckyyb.20170472
MA Bin, ZHAO Zhao, HU Jian-chao. Vibration Response Properties of Damage of HighRoller Compacted Concrete Arch Dam[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(10): 131-136 https://doi.org/10.11988/ckyyb.20170472
中图分类号: TV642.2   

参考文献

[1] 张严明. 中国碾压混凝土筑坝技术[M].北京: 中国水利水电出版社, 2010: 49-53.
[2] 张严明. 中国碾压混凝土坝20年[M].北京: 中国水利水电出版社, 2010: 1-454.
[3] 庞作会. 多层结构模型在龙滩碾压混凝土坝应力分析中的应用[J]. 工程力学, 2002, 19(2): 147-153.
[4] 张小刚, 王学志, 孙荣书. 带裂纹碾压混凝土层面强度尺寸和边界效应[J]. 大连理工大学学报, 2009, 48(1): 115-120.
[5] 张旭辉. 碾压层缝对碾压混凝土拱坝承载能力的影响研究[D]. 桂林: 广西大学, 2006.
[6] 张仲卿. 碾压混凝土拱坝沿层面破坏机理研究[J].水力学报, 2003,(2): 61-65.
[7] 周林仁, 欧进萍. 钢筋混凝土结构裂缝损伤状态模型建模方法与分析[J]. 大连理工大学学报, 2012, 52(3): 399-405.
[8] 田双珠, 丁 魁, 王元战. 基于ANSYS的钢筋混凝土构件裂缝宽度计算方法[J]. 水道港口, 2008, 29(5): 351-357.
[9] 徐福卫,田 斌. 高拱坝裂缝成因分析[J]. 湖北水力发电, 2005, (2): 14-17.
[10]汤洪洁, 张江红, 陈景富,等. 安徽流波水电站碾压混凝土拱坝裂缝处理[J]. 水利水电技术, 2012, 43(7): 72-74.
[11]王敖召. 圆满贯水电站碾压混凝土拱坝裂缝处理[J]. 贵州水力发电, 2008, 22(6): 43-45.
[12]唐金平. 樊口泵站混凝土裂缝及沉降缝渗漏处理技术[J]. 长江科学院院报, 2008, 25(6): 110-112.
[13]刘献栋, 邓志高, 高 峰. 基于逆变换的路面不平度仿真研究[J]. 中国公路学报, 2005, 18(1):122-126.
[14]桂水荣, 陈水生, 唐志军. 基于Fourier逆变换法的桥面不平度模拟及测试分析[J]. 公路工程, 2007,32(6):39-43.
[15]李成业. 基于HHT的二滩拱坝工作性态识别及其拍振机理研究[D].天津: 天津大学, 2010.

基金

国家重点基础研究发展计划(973计划)(2013CB035905); 国家自然科学基金创新研究群体科学基金项目(51621092);国家自然科学基金项目(51579173);天津市重点领域创新团队(2014TDA001);高等学校学科创新引智计划(B14012)

PDF(4456 KB)

Accesses

Citation

Detail

段落导航
相关文章

/