渭河下游垂向潜流通量动态特征研究

霍艾迪, 韦红, 管文轲, 侯志强, 郑小路, 杜伟宏, 温轶然, 李聪怡

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (9) : 17-22.

PDF(4295 KB)
PDF(4295 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (9) : 17-22. DOI: 10.11988/ckyyb.20170239
水资源与环境

渭河下游垂向潜流通量动态特征研究

  • 霍艾迪1, 韦红1, 管文轲2, 侯志强3, 郑小路1, 杜伟宏1, 温轶然1, 李聪怡1
作者信息 +

Dynamic Characteristics of Vertical Hyporheic Flux in the Downstream of Weihe River, China

  • HUO Ai-di1, WEI Hong1, GUAN Wen-ke2 , HOU Zhi-qiang3, ZHENG Xiao-lu1,
    DU Wei-hong 1, WEN Yi-ran1, LI Cong-yi1
Author information +
文章历史 +

摘要

潜流交换控制着潜流带内水量的变化及各种物质(氧气、有机质)的滞留时间,对地下水的水量和水质变化具有重要的影响。精确计算潜流带内的潜流通量及其动态变化特征,对河流的综合治理及生态恢复具有十分重要的意义。采用热量运移解析模型求解潜流通量,利用温度示踪技术,重点研究潜流交换过程的空间非均质特征和动态变化特征;以渭河下游草滩段为研究区,进行河床浅层沉积物潜流通量的计算。结果表明:监测时段内研究区地下水流为河水补给地下水,河道内不同位置的浅层潜流带内呈现出不同的潜流通量动态特征,其变化范围在0.873~8.900 μm/s之间,潜流带厚度约为0.75 m,呈现比较复杂的动态变化特征。监测时段内各深度间潜流通量总体变化趋势为上升趋势,在垂向分布上存在差异,而且这种差异随时间变化。温度示踪方法简单易行,在潜流通量的计算中具有较好的准确性,适用于潜流带内水动力交换量的精确计算。

Abstract

Hyporheic exchange has significant impact on the changes of water quantity in the hyporheic zone and residence time of various substances (oxygen and organic matters). Accurate calculation of hyporheic exchange flux and its dynamic change is of crucial importance for the integrated management and ecological restoration of rivers. In the present paper, the hyporheic flux in the hyporheic zone of the Caotan section of Weihe River is calculated by using heat transfer model as a case study. The spatial heterogeneity and dynamic change of hyporheic exchange are examined through temperature tracing. Results show that in the monitoring period, groundwater in the study area was recharged by river flow. Hyporheic flux varied in a range of 8.73×10-7-8.90×10-6m/s in shallow hyporheic zones of about 0.75 m thick at different locations, displaying complex dynamic feature. In the monitoring period, the overall trend of hyporheic flux at different depths was increasing, yet with some differences in vertical distribution varying with time. The results prove that temperature tracing method is simple and accurate in the calculation of hyporheic flux, and is suitable for the calculation of hydrodynamic exchange capacity in hyporheic zone.

关键词

潜流带 / 潜流通量 / 热量 / 示踪剂 / 渭河

Key words

hyporheic zone / hyporheic flux / heat / tracer / Weihe River

引用本文

导出引用
霍艾迪, 韦红, 管文轲, 侯志强, 郑小路, 杜伟宏, 温轶然, 李聪怡. 渭河下游垂向潜流通量动态特征研究[J]. 长江科学院院报. 2018, 35(9): 17-22 https://doi.org/10.11988/ckyyb.20170239
HUO Ai-di, WEI Hong, GUAN Wen-ke, HOU Zhi-qiang, ZHENG Xiao-lu,
DU Wei-hong, WEN Yi-ran, LI Cong-yi.
Dynamic Characteristics of Vertical Hyporheic Flux in the Downstream of Weihe River, China[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(9): 17-22 https://doi.org/10.11988/ckyyb.20170239
中图分类号: P345   

参考文献

[1] 马 瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 2013. 32(2): 131-137.
[2] 杨小全, 金光球, 李 凌,等.河流潜流带中胶体迁移的研究进展[J]. 水利水电科技进展, 2011,30(6): 78-83.
[3]OTZ M H, OTZ H K, OTZ I, et al. Surface Water/Groundwater Interaction in the Piora Aquifer, Switzerland: Evidence from Dye Tracing Tests[J]. Hydrogeology Journal, 2003, 11(2): 228-239.
[4] KEERY J, BINLEY A, CROOK N, et al. Temporal and Spatial Variability of Groundwater-Surface Water Fluxes: Development and Application of an Analytical Method Using Temperature Time Series[J]. Journal of Hydrology, 2007, 336(1/2): 1-16.
[5] PASSADORE G, SOTTANI A, ALTISSIMO L, et al. Using Heat as a Tracer to Characterize Streambed Water Fluxes of the Brenta River (Italy)[J]. Engineering Geology for Society and Territory —Volume 3, 2015, 3: 241-244.
[6] 张 佳, 霍艾迪, 张 骏. 基于 SWAT 模型的长江源区巴塘河流域径流模拟[J]. 长江科学院院报, 2016,33(5):18-22.
[7]CONSTANTZ J, COX M H, SU G W. Comparison of Heat and Bromide as Ground Water Tracers Near Streams[J]. Groundwater, 2003, 41(5): 647-656.
[8] CRANSWICK R H, COOK P G, LAMONTAGNE S. Hyporheic Zone Exchange Fluxes and Residence Times Inferred from Riverbed Temperature and Radon Data[J]. Journal of Hydrology, 2014, 519(B): 1870-1881.
[9]SOPHOCLEOUS M. Interactions between Groundwater and Surface Water: The State of the Science[J]. Hydrogeology Journal, 2002, 10(1): 52-67.
[10]KALBUS E, SCHIMIDT C, BAYER-RAICH M, et al. New Methodology to Investigate Potential Contaminant Mass Fluxes at the Stream-aquifer Interface by Combining Integral Pumping Tests and Streambed Temperatures[J]. Environmental Pollution, 2007, 148(3): 808-816.
[11]TONINA D, LUCE C, GARIGLIO F. Quantifying Streambed Deposition and Scour from Stream and Hyporheic Water Temperature Time Series[J]. Water Resources Research, 2014, 50(1): 287-292.
[12]BUFFINGTON J M, TONINA D. Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange[J]. Geography Compass, 2009, 3(3): 1038-1062.
[13]HATCH C E, FISHER A T, REVENAUGH J S, et al. Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records: Method Development[J]. Water Resources Research, 2006, 42(10): 2405-2411.
[14]GORDON R P, LAUTZ L K, BRIGGS M A, et al. Automated Calculation of Vertical Pore-water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program[J]. Journal of Hydrology, 2012, 420/421:142-158.
[15]BEACH V, PETERSON E W. Variation of Hyporheic Temperature Profiles in a Low Gradient Third-Order Agricultural Stream—A Statistical Approach[J]. Open Journal of Modern Hydrology, 2013, 3(2):55-66.
[16]DYKAAR B B, KITANIDIS P K. Determination of the Effective Hydraulic Conductivity for Heterogeneous Porous Media Using a Numerical Spectral Approach: 2. Results[J]. Water Resources Research, 1992, 28(4):1167–1178.
[17]ODONG J. Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis[J]. Journal of American Science, 2007, 3(3):105-113.
[18]HUO A D, DANG J, SONG J X, et al. Simulation Modeling for Water Governance in Basins Based on Surface Water and Groundwater[J]. Agricultural Water Management, 2016, 174: 22-29
[19]HUO A D, PENG J B, CHEN X H, et al. Groundwater Storage and Depletion Trends in the Loess Areas of China[J]. Environmental Earth Sciences, 2016, 75 (16): 1167.
[20]LAUTZ L K. Observing Temporal Patterns of Vertical Flux Through Streambed Sediments Using Time-series Analysis of Temperature Records[J]. Journal of hydrology, 2012, 464/465: 199-215.
[21]鲁程鹏, 张 颖, 朱静思, 等. 基于热追踪方法的河流横断面潜流交换时空非均质特征研究[J]. 第四纪研究, 2014. 34(5): 1094-1105.
[22]CONSTANTZ J, STONESTRON D A. Heat as a Tracer of Water Movement Near Streams[J]. US Geological Survey Circular, 2003, (1260): 1-96.
[23]STOREY R G, HOWARD K W, WILLIAMS D D. Factors Controlling Riffle-scale Hyporheic Exchange Flows and Their Seasonal Changes in a Gaining Stream: A Three-dimensional Groundwater Flow Model[J]. Water Resources Research, 2003,39(2): 1944-7973.
[24]PEYRARD D, SAUVAGE S, VERVIER P, et al. A Coupled Vertically Integrated Model to Describe Lateral Exchanges between Surface and Subsurface in Large Alluvial Floodplains with a Fully Penetrating River[J]. Hydrological Processes, 2008, 22(21): 4257-4273.

基金

国家自然科学基金项目(51679200, 41790444 );陕西省重点科技创新团队项目(2014KCT-27); 教育部科技发展中心产教联合基金课题(2017B00022);陕西高等教育学会基金项目(XGH17049)

PDF(4295 KB)

Accesses

Citation

Detail

段落导航
相关文章

/