在地震荷载作用下,混凝土重力高坝含水裂缝快速张开闭合导致水体压缩,产生附加水压,极易引起裂缝失稳。为了探究地震荷载作用下裂缝内水压变化规律,假定裂缝形状为椭圆形,推导出裂缝在地震荷载作用下附加水压计算公式。通过实例分析地震荷载作用对裂缝内附加水压及裂尖应力强度因子在不同方向、不同尺寸以及不同排水率条件下的影响。研究表明:在地震荷载作用下,计算实例的最大附加水压达到初始水压的7.55倍;随着初始裂缝宽度的增大,最大附加水压和裂尖附加应力强度因子快速减小,且初始裂缝宽度越小,排水率对附加水压的影响程度越大;裂缝倾斜角度对裂尖附加应力强度因子影响不显著。研究结果可为进一步研究地震荷载作用下重力高坝中裂缝的稳定性提供理论基础。
Abstract
Water-containing cracks on concrete gravity dam are susceptible to instability due to additional water pressure generated by water compression caused by the rapid opening and closing of cracks under seismic load. In an attempt to obtain the variation law of water pressure in cracks under seismic load, we deducted the formula of additional water pressure in cracks under seismic load based on the assumption that the crack is oval. By case study, we analyzed the changes of additional pressure and factor of stress intensity at crack tip in different directions in the presence of varying crack size and drainage rate. Results revealed that the maximum additional water pressure of the calculation case reached 7.55 times of initial water pressure under seismic load. Meanwhile, with the increase of initial crack width, the maximum additional water pressures and the factor of stress intensity at crack tip declined rapidly; with the decrease of initial crack width, the influence of drainage rate on additional water pressure became more evident. In addition, the inclination angle of crack had no obvious impact on the factor of stress intensity at crack tip.
关键词
裂缝 /
地震荷载 /
计算模型 /
最大附加水压 /
应力强度因子
Key words
crack /
seismic load /
calculation model /
maximum additional water pressure /
stress intensity factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈厚群. 水工混凝土结构抗震研究进展的回顾和展望[J]. 中国水利水电科学研究院学报, 2008, 6(4):3-15.
[2] 崔华丽,费文平,张国强.岩质高边坡裂缝成因分析[J]. 长江科学院院报, 2011, 28(2):45-49.
[3] 王志远. 重力坝的实测坝踵应力及原因分析[J].水电与抽水蓄能, 2000, 24(6):14-17.
[4] 贾金生, 李新宇, 郑璀莹. 特高重力坝考虑高压水劈裂影响的初步研究[J]. 水利学报, 2006, 37(12):1509-1515.
[5] 汪 洋, 贾金生, 冯 炜,等. 考虑高压水劈裂的高重力坝安全性试验研究[J]. 水利学报, 2016, 47(11):1397-1404.
[6] SLOWIK V.Water Pressure in Propagating Concrete Cracks[J].Journal of Structural Engineering, 2000, 126(2):235-242.
[7] VISSER J H M. Extensile Hydraulic Fracturing of (Saturated) Porous Materials [J]. Civil Engineering & Geosciences, 1998, 44(Sup.1): 13-14.
[8] TINAWI R, GUIZANI L. Formulation of Hydrodynamic Pressures in Cracks Due to Earthquakes in Concrete Dams[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(7):699-715.
[9] 钟波波, 张永彬, 白象元,等. 非均匀介质在动荷载作用下的裂缝扩展研究[J]. 长江科学院院报, 2014, 31(11):26-30.
[10]刘钧玉, 林 皋, 胡志强,等. 裂纹内水压分布对重力坝断裂特性的影响[J]. 土木工程学报, 2009,42(3):132-141.
[11]黄 云, 金 峰, 王光纶,等. 高拱坝上游坝踵裂缝稳定性及其扩展[J]. 清华大学学报(自然科学版), 2002, 42(4):555-559.
[12]李宗利, 任青文, 王亚红. 岩石与混凝土水力劈裂缝内水压分布的计算[J]. 水利学报, 2005, 36(6):656-661.
[13]何 迪, 李宗利. 地震荷载作用下重力坝坝踵裂缝内水压分布研究[J]. 人民长江, 2011, 42(9):72-75.
[14]郑志芳, 李宗利, 孙丽丽. 动力荷载作用下裂缝水力劈裂效应研究[J]. 水利水运工程学报, 2010,(2):45-50.
[15]阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布[J]. 重庆大学学报(自然科学版), 1995, 18(3):20-26.
[16]张鸿雁,张志政,王 元,等. 流体力学[M]. 北京: 科学出版社,2014.
[17]徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社,2011.