南水北调中线工程渠坡膨胀土含水率监测及分析

刘祖强, 郑敏, 熊涛

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 74-78.

PDF(2417 KB)
PDF(2417 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 74-78. DOI: 10.11988/ckyyb.20170172
岩土工程

南水北调中线工程渠坡膨胀土含水率监测及分析

  • 刘祖强, 郑敏, 熊涛
作者信息 +

Monitoring and Analysis of Water Content of Expansive Soil in the Middle Route of South-to-North Water Diversion Project

  • LIU Zu-qiang, ZHENG Min, XIONG Tao
Author information +
文章历史 +

摘要

为了分析渠坡膨胀土含水率变化对渠坡稳定性的影响,对现场自动采集的含水率、吸力、降雨量、土温和气温等数据进行初步分析和灰关联分析。初步认为强膨胀土含水率变化的主要影响因素依次为温度、降雨量、蒸发量和吸力等。现场监测结果和灰关联分析得到:受降雨入渗过程滞后影响,大气降雨3 d后,才能渗入到1.6 m深的强膨胀土中,影响深度<6.1 m;渗入到1.4 m深的强膨胀岩中需要4~7 d时间,影响深度<5.1 m。对渠坡膨胀土含水率变化的长期监测及其数据分析,为南水北调工程渠坡膨胀土胀缩变形的分析及渠道安全运行提供了依据。

Abstract

In an attempt to examine the influence of water content change in expansive soil on canal slope stability, site-monitored data of water content, suction, rainfall, soil temperature and air temperature was analyzed by grey correlation method. The change of water content in strongly expansive soil is mainly affected by temperature, rainfall, evaporation, and suction in order. Grey correlation analysis suggest that rain water infiltrates into strongly expansive soil in a depth of 1.6 m only three days after rainfall, affecting the slope soil in a depth smaller than 6.1 m; it takes 4-7 days for rain water infiltrating into strongly expansive rock in a depth of 1.4 m, with the influence depth within 5.1 m. The long-term monitoring and data analysis offer basis for the safe operation of canals in the South-to-North Water Transfer Project.

关键词

南水北调中线工程 / 渠坡 / 膨胀土 / 含水率 / 监测 / 灰关联分析 / 降雨入渗

Key words

South-to-North Water Transfer Project / canal slope / expansive soil / moisture content / monitoring / grey correlation analysis / infiltration of rainfall

引用本文

导出引用
刘祖强, 郑敏, 熊涛. 南水北调中线工程渠坡膨胀土含水率监测及分析[J]. 长江科学院院报. 2018, 35(7): 74-78 https://doi.org/10.11988/ckyyb.20170172
LIU Zu-qiang, ZHENG Min, XIONG Tao. Monitoring and Analysis of Water Content of Expansive Soil in the Middle Route of South-to-North Water Diversion Project[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(7): 74-78 https://doi.org/10.11988/ckyyb.20170172
中图分类号: TU443   

参考文献

[1] 孔令伟,郭爱国,赵颖文,等.荆门膨胀土的水稳定性及其力学效应[J].岩土工程学报,2004,26(6):727-732.
[2] 王宝明. 非饱和膨胀土含水率与强度特性的直接快剪研究[J].科技风,2015,(6):27-28.
[3] 龚壁卫,C.W.W.NG,包承纲,等.膨胀土渠坡降雨入渗现场试验研究[J].长江科学院院报,2002,19(增1):94-97.
[4] 刘 鸣,龚壁卫,刘 军,等.膨胀土(岩)渠坡现场监测技术研究[J].长江科学院院报,2009,26(11):62-66.
[5] 刘 鸣,刘 军,谭峰屹,等.新乡膨胀岩试验段渠坡处理现场监测研究[J].长江科学院院报,2011,28 (10): 148-155.
[6] 陈善雄,赵 旻,冷星火,等.强膨胀土渠坡破坏机理及处理技术[M].北京:科学出版社,2016.
[7] 刘祖强,吕 笑,龚文慈,等.膨胀土(岩)渠坡自动化综合监测系统研究[J].人民长江,2014,45(7):31-35.
[8] 常 丹,李 旭,刘建坤,等.土体含水率测量方法研究进展及比较[J].工程勘察,2014, 42(9):17-22.
[9] 邓聚龙.灰色系统理论的关联空间[J].模糊数学,1985,(2):1-10.
[10]邓聚龙.灰色系统理论教程[M].武汉: 华中理工大学出版社,1990.
[11]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].5版.北京:科学出版社,2010.
[12]张 军,刘祖强,邓小川,等.滑坡监测分析预报的非线性理论和方法[M].北京:中国水利水电出版社,2010.
[13]刘祖强.试论变形体变形的灰色特征及其性态的灰色评估[J].工程勘察,1992,(4):49-52.
[14]赵哲炎,刘祖强,粟玉英. 滑坡体变形空间分布的灰关联模型分析[J]. 人民长江,2013,44(23):60-62.

基金

“十二五”国家科技支撑计划项目(2011BAB10B02);长江空间信息技术工程有限公司(武汉)科技创新项目(CK2015Y03)

PDF(2417 KB)

Accesses

Citation

Detail

段落导航
相关文章

/