位于严寒地区的混凝土坝,由于没有及时做好保温措施,甚至某些早期建造的大坝由于施工条件的限制导致其在浇筑过程中受冻,坝体的参数会受到影响。通过改进一般的单测点混合模型,采用约束弹性模量调整系数范围的优化算法进行拟合计算,选取测量精度较高的测点建立多测点联合反演受冻区弹性模量模型。以某混凝土重力坝为例对坝体受冻区弹性模量进行反演,得到的多测点混合模型拟合的复相关系数在0.98以上,与单测点混合模型反演结果相差不大,验证了方法的合理性。结果证明采用多测点混合模型联合反演法反演大坝受冻区参数是可行的。研究结果可为评价严寒地区大坝坝体受冻区域混凝土强度提供依据。
Abstract
Concrete dams in cold regions with overdue heat preservation maintaining measures, or with poor construction conditions, would possibly suffer from frost damage during concrete construction, thus bring about changes to parameters of the dam. A multipoint hybrid model is established to invert the modulus of elasticity of frost damage concrete dam by improving ordinary single-point hybrid model. Linearly constrained optimization algorithm is employed to constrain the range of elastic modulus adjustment coefficient for the fitting calculation, and some measuring points with high precision are selected for the model. According to case study result of a concrete gravity dam, the multiple correlation coefficients of the multipoint hybrid model is above 0.98, barely different from the result of single-point hybrid model. The conclusions suggest that the proposed multipoint hybrid model is feasible in the back analysis of parameters of frost damage concrete dam.
关键词
受冻区混凝土 /
弹性模量 /
多测点混合模型 /
线性约束优化算法 /
保温措施 /
联合反演
Key words
frost damage concrete /
elasticity modulus /
multipoint hybrid model /
linearly constrained optimization algorithm /
heat preservation measure /
joint inversion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张冬冬.混凝土重力坝材料参数反演方法研究[D].大连:大连理工大学,2014.
[2] 顾冲时,吴中如.大坝与坝基安全监控理论和方法及其应用[M].南京:河海大学出版社,2006:2-7.
[3] 吴成滨,林 川,曾树元,等.基于改进果蝇算法的危岩体弹性模量反演计算[J].水利水电技术, 2016, 47(10): 115-118.
[4] 曹明杰,曹 鑫,徐政治.量子遗传算法在混凝土重力坝综合弹性模量反演中的应用[J].长江科学院院报,2016,33(4):111-114.
[5] 冯 新,周 晶,陈健云,等.一种混凝土重力坝分区弹模反演新方法[J].大连理工大学学报,2002,42(4):480-484.
[6] 郭乙木,万 力,魏德荣,等.坝体力学参数的混合模型优化反演法及其应用[J].水电能源科学,2001,19(2):36-38,42.
[7] 杨 杰,吴中如,顾冲时,等.坝体与坝基材料参数的薄层单元有限元反分析[J].岩石力学与工程学报,2006,25(增1):3087-3092.
[8] POWELL M J D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations[J]. Mathematical Programming, 1989, 45(1/2/3): 547-566.
[9]POWELL M J D. TOLMIN: A FORTRAN Package for Linearly Constrained Optimization Calculations, Report DAMTP[R]. Cambridge, UK: University of Cambridge, 1989.
[10]王周宏,钟毅芳.工程优化计算中Wolfe-Powell准则的研究[J].华中科技大学学报(自然科学版),2000,28(10):19-21.
[11]POWELL M J D. Updating Conjugate Directions by the BFGS Formula[J]. Mathematical Programming, 1987, 38(1): 29-46.