膨胀土电化学改性试验研究

李文宇, 江美英

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 100-105.

PDF(2348 KB)
PDF(2348 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 100-105. DOI: 10.11988/ckyyb.20170153
岩土工程

膨胀土电化学改性试验研究

  • 李文宇1, 江美英2
作者信息 +

An Electrochemical Modification of Expansive Soil

  • LI Wen-yu1, JIANG Mei-ying2
Author information +
文章历史 +

摘要

为了研究改善膨胀土性质的方法,同时了解膨胀土改善后的性质,通过以羟基铝溶液为电解液的电化学试验方法对膨胀土的性质进行改善,将改性后的试样土分为A区(阳极区)、C区(阴极区)和M区(中间区)3个部分,并分别对3个部分试样土以及原状土进行宏观和微观试验分析。试验数据分析得到:电化学改性后的试样土的黏粒含量减少而粉粒含量增多,比表面积和孔径减小,颗粒间连接更紧密,内摩擦角增大,同时土颗粒的持水量减少,亲水性减弱,自由膨胀率大大降低。试验结果表明:膨胀土的性质变化是由[Al13]7+的离子交换和局部pH值变化等使带电土颗粒的扩散双电层变薄、颗粒间斥力变弱导致的,试样土A,C,M区的改善效果差异是受到外加电场对双电层的影响和土体微结构的各向异性等因素造成的。

Abstract

The properties of expansive soil were improved by electrochemical method with hydroxyl-aluminum solution for electrolyte. The modified soil specimens were divided into three parts: part A (anode), part C (cathode), and part M (middle). Macroscopic and microscopic tests were carried out on the three parts and natural soils. Results revealed that the clay content of modified soils decreased and the silt content increased. The specific surface area and pore size decreased, which made the contact between soil particles closer, resulting in the increase of internal friction angle. Meanwhile, the water-holding capacity of soil particles reduced, indicating that the hydrophilia weakened. Moreover, the free swell of soil samples was greatly lowered. The changes in the properties are attributed to the ion exchange of [Al13]7+ and the local pH changes which thin the diffused double layer and weaken the interparticle repulsion. In addition, the effects of improvement on the three parts were different due to the influence of the applied electric field on diffused double layer and the anisotropy of soil microstructure.

关键词

膨胀土 / 电化学改性 / 羟基铝 / 离子交换 / 带电土颗粒 / 扩散双电层

Key words

expansive soil / electrochemical modification / hydroxyl-aluminum / ion exchange / electrified soil particles / diffused double layer

引用本文

导出引用
李文宇, 江美英. 膨胀土电化学改性试验研究[J]. 长江科学院院报. 2018, 35(7): 100-105 https://doi.org/10.11988/ckyyb.20170153
LI Wen-yu, JIANG Mei-ying. An Electrochemical Modification of Expansive Soil[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(7): 100-105 https://doi.org/10.11988/ckyyb.20170153
中图分类号: TU443   

参考文献

[1] 程 钰,石名磊,周正明. 消石灰对膨胀土团粒化作用的研究[J]. 岩土力学, 2008, 29(8): 2209-2214.
[2] 罗 逸, 李国华,张 慧. 有机阳离子化合物对改善膨胀土性质的影响[J]. 岩土工程学报, 1996, 18(5): 40-44.
[3] 王 军, 张 乐, 刘飞禹,等. 真空预压-电渗法联合加固软黏土地基试验研究[J]. 岩石力学与工程学报, 2014, 33(增2): 4181-4192.
[4] 焦 丹, 龚晓南,李 瑛. 电渗法加固软土地基试验研究[J]. 岩石力学与工程学报, 2011, 30(增1): 3208-3216.
[5] 符洪涛, 王 军, 蔡袁强,等. 低能量强夯-电渗法联合加固软黏土地基试验研究[J]. 岩石力学与工程学报, 2015, 34(3): 612-620.
[6] QU J, LIU H. Optimum Conditions for Al13 Polymer Formation in PACl Preparation by Electrolysis Process[J]. Chemosphere, 2004, 55(1): 51-56.
[7]FURRER G, LUDWIG C, SCHINDLER P W. On the Chemistry of the Keggin Al13 Polymer: I. Acid-base Properties[J]. Journal of Colloid and Interface Science, 1992, 149(1): 56-67.
[8] XU Y, WANG D S, LIU H, et al. Optimization of the Separation and Purification of Al13[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231(1/2/3): 1-9.
[9] PINNAVAIA T J. Intercalated Clay Catalysts[J]. Science, 1983, 220(4595): 365-371.
[10]ZHU R L, WANG T, GE F, et al. Intercalation of Both CTMAB and Al-13 into Montmorillonite[J]. Journal of Colloid and Interface Science, 2009, 335(1): 77-83.
[11]LAHAV N, SHANI U, SHABTAI J, et al. Cross-linked Smectites.1. Synthesis and Properties of Hydroxy-aluminum-montmorillonite[J]. Clays and Clay Minerals, 1978, 26(1): 107-115.
[12]BRINDLEY G W, SEMPELS R E. Preparation and Properties of Some Hydroxy-aluminium Beidellites[J]. Clay Minerals, 1977, 12(3): 229-237.
[13]GIL A, MONTES M. Analysis of the Microporosity in Pillared Clays[J]. Langmuir, 1994, 10(10): 291-297.
[14]DAS B M. Advanced Soil Mechanics[M]. Boca Raton: CRC Press, 2013.
[15]DELGADO A V, GONZLEZ-CABALLERO F, HUNTER R J, et al. Measurement and Interpretation of Electrokinetic Phenomena[J]. Journal of Colloid and Interface Science, 2007, 309(2): 194-224.
[16]JOHANSSON G. On the Crystal Structures of Some Basic Aluminium Salts[J]. Acta Chemica Scandinavica, 1960,14(3): 771-773.
[17]CHEN Zhao-yang, LUAN Zhao-kun, FAN Jing-hua, et al. Effect of Thermal Treatment on the Formation and Transformation of Keggin Al13 and Al30 Species in Hydrolytic Polymeric Aluminum Solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292(2/3): 110-118.
[18]姚海林, 程 平, 杨 洋,等. 标准吸湿含水率对膨胀土进行分类的理论与实践[J]. 中国科学E辑:工程科学材料科学, 2005, 35(1): 43-52.
[19]杨雅秀. 中国黏土矿物[M]. 北京:地质出版社, 1994.

基金

山西省经济信息委员会科技创新项目(SXCCGS1502)

PDF(2348 KB)

Accesses

Citation

Detail

段落导航
相关文章

/