西南高山峡谷区,地形及地层岩性特征造就了温度、矿化度异于局部地下水流系统的区域地下水流系统,季节变动或人为因素造成地表水水位抬升甚至淹没地下水的排泄点,从而影响该系统排泄端地下水与地表水的混合特征。为了研究该区域的地下水流和地表水的盐分混合特征,采用砂槽物理模型以及SEAWAT模块数值模型从盐分浓度分布特征方面研究排泄端混合特征的变化规律。结果表明:区域地下水流系统与地表水之间存在水头差与密度差,在二者共同作用下,淡水侵入含水层,发生水动力弥散作用,形成低矿化度淡水逐渐过渡到高矿化度咸水的混合过渡带,其边界呈抛物线形;通过模拟不同密度差条件下的混合过程,进一步表明咸淡水密度差越大,混合过渡带后退距离越远,形态越扁长。研究结果将为分析咸淡水混合过程中温度分布特征提供参考,进而为深入研究西南地区多级次地下水流系统的混合特征作铺垫。
Abstract
On the account of topography and strata of mountains and valleys in Southwest China, the temperature and salinity of regional groundwater system are different from those of local flow system. Induced by climate change or human behaviors, surface water level rises and even inundates the discharge point of groundwater, exerting impact on the mix between groundwater and surface water in the regional discharging area. In the present paper, variations in the features of the mix between salt water and fresh water flows are researched via sand box physical model and SEAWAT simulation from the aspect of salinity distribution. The results are concluded as follows: under the actions of both hydraulic head difference and density difference between regional groundwater and surface water, a mixed transition zone (from low salinity water to high salinity water) with parabolic boundary is generated by hydrodynamic dispersion by the intrusion of fresh water into aquifer. Furthermore, simulations of the mix between salt water and saline water with density difference demonstrate that when the density difference gets larger, the backward distance of the mixed transition zone is longer, and the boundary is more prolate. The research results lay a foundation for deep research on the mix characteristics between different levels of groundwater systems in Southwest China.
关键词
西南高山峡谷区 /
河谷排泄区 /
咸淡水混合特征 /
砂槽模型 /
SEAWAT模型 /
浓度分布特征
Key words
mountains and valleys in Southwest China /
discharging area of valley /
characteristics of the mix between salt water and fresh water /
sand box model /
SEAWAT model /
characteristics of concentration distribution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓长虹. 高原古盐田的守护[J]. 中华儿女,2012, (20): 45-50.
[2] 屈丽丽, 徐世光, 杨秀梅,等.怒江跃进桥温泉水化学特征及成因分析[J]. 科学技术与工程, 2011, 11(20): 4724-4729.
[3] PINDER G F, COOPER H H. A Numerical Technique for calculating the Transient Position of the Salt Water Front[J]. Water Resources Research,1970,6(3):875-882.
[4] 周 训, 宋 超, 赵劲波,等. 海岸带咸淡水界面模拟实验的教学实践[J]. 中国地质教育,2013, 22(3): 90-93.
[5] 陈鸿汉, 王新民, 张永祥,等. 潍河下游地区海咸水入侵动态三维数值模拟分析[J]. 地学前缘, 2000, 7(增): 297-304.
[6] 林 锦,郑春苗,吴剑锋,等. 基于遗传算法的变密度条件下地下水模拟优化模型[J]. 水利学报, 2007, 38(10): 1236-1244.
[7] 陈开荣, 陈汉宝, 赵海亮. 基于SEAWAT的海水入侵数值模拟[J]. 水资源与水工程学报, 2012, 23(6): 140-145.
[8] 张 奇.海水入侵的实验研究[J]. 水文地质工程地质, 2005, 32(4): 43-47.
[9] 栾熙明, 郑西来, 黄 翠. 变密度地下水流模拟软件SEAWAT-2000简介[J]. 海洋科学集刊, 2010, (1): 100-104.
[10]LANGEVIN C D. Simulation of Submarine Ground Water Discharge to a Marine Estuary: Biscayne Bay, Florida[J]. Groundwater, 2003, 41(6): 758-771.
[11]李国敏, 陈崇希,沈照理,等.涠洲岛海水入侵模拟[J].水文地质工程地质,1995, 22(5): 1-5.
[12]GUO W X, LANGEVIN C D. User’s Guide to SEAWAT: A Computer Program for the Simulation of Three-dimensional Variable Density Groundwater Flow[K]. USA: US Geological Survey, 2002.
[13]林 锦.变密度条件下地下水模拟优化研究[D].杭州:浙江大学, 2008.
[14]刘 茜. 咸淡水过渡带水-岩相互作用研究[D].青岛:中国海洋大学, 2007.
[15]BEAR J. Dynamics of Fluids in Porous Media[M]. New York: Dover Publications, 1972.