长江科学院院报 ›› 2018, Vol. 35 ›› Issue (6): 30-35.DOI: 10.11988/ckyyb.20161307

• 水资源与环境 • 上一篇    下一篇

基于改进混合蛙跳算法的梯级水库优化调度

李荣波1,2,纪昌明1,孙平3,刘丹4,张璞1,李继清1   

  1. 1.华北电力大学 可再生能源学院, 北京 102206;
    2.长江勘测规划设计研究有限公司,武汉 430010;
    3.中国电建集团 北京勘测设计研究院有限公司, 北京 100024;
    4.中国水利水电科学研究院, 北京 100038
  • 收稿日期:2016-12-12 修回日期:2017-03-17 出版日期:2018-06-01 发布日期:2018-06-16
  • 通讯作者: 纪昌明(1956-),男,湖北洪湖人,教授,博士,博士生导师,研究方向为水(能)资源规划与管理、风险管理与决策理论。E-mail:cmji@ncepu.edu.cn
  • 作者简介:李荣波(1989-),男,贵州遵义人,博士研究生,研究方向为水(能)资源规划与管理。E-mail:rongbolee@163.com
  • 基金资助:
    国家自然科学基金项目(51279062,51509001);“十三五”国家重点研发计划课题(2016YFC0402208);中央高校基本科研业务费专项(2016MS51,2016XS58)

Optimizing Operation of Cascade Reservoirs Based on an Improved Shuffled Frog Leaping Algorithm

LI Rong-bo1,2,JI Chang-ming1,SUN Ping3,LIU Dan4,ZHANG Pu1,LI Ji-qing1   

  1. 1.School of Renewable Energy, North China Electric Power University, Beijing 102206, China;
    2.Changjiang Institute of Survey, Planning, Design and Research Co.,Ltd., Wuhan 430010, China;
    3.Power China Beijing Engineering Corporation, Beijing 100024, China;
    4.China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2016-12-12 Revised:2017-03-17 Published:2018-06-01 Online:2018-06-16

摘要: 针对混合蛙跳算法在寻优过程中出现的早熟收敛问题,利用混沌技术的遍历性优势对子群最优个体进行变异操作,形成局部精细搜索策略;根据蛙群相对多样性参数来判断算法是否陷入局部最优,进而对蛙群最优个体进行扰动以提高全局寻优能力,形成全局激励调节策略。耦合2种策略,提出了一种改进混合蛙跳算法。将其应用于李仙江梯级水库优化调度中,结果表明所提算法具有寻优质量高、收敛速度快的特点,有效地克服了标准混合蛙跳算法的早熟缺陷,为水库调度模型的求解提供了一种新方法。

关键词: 梯级水库, 优化调度, 混合蛙跳算法, 局部精细搜索, 全局激励调节, 耦合改进机制

Abstract: In view of the premature convergence in shuffled frog leaping algorithm (SFLA), an improved shuffled frog leaping algorithm (AISFLA) is proposed by coupling the local refine search strategy (LRSS) with the global incentive regulation strategy (GIRS). LRSS improves the local search ability by using chaos technology to conduct more refined search around the optimal individual of each group, while GIRS keeps an efficient global search performance by disturbing the optimum individual to improve the frogs’ population diversity and further motivate frogs jumping out of stable state. AISFLA is applied to the optimal operation of Lixianjiang cascade reservoirs as a demonstration. The modeling result proves that AISFLA is of high optimization quality and fast convergence by effectively handling the premature convergence of SFLA, hence can be a new approach to the solution of optimal operation of cascade reservoirs.

Key words: cascade reservoirs, optimal operation, shuffled frog leaping algorithm, local refine search strategy, global incentive regulation strategy, coupling improvement mechanism

中图分类号: