复式断面丁坝是常见的航道整治建筑物。通过室内水槽试验开展非淹没复式断面丁坝流速分布规律研究。结果表明①表层合流速高速区主要出现在一级丁坝坝头下游外侧,二级丁坝长度b2对高速区流速大小及平面分布形态具有明显影响,而弗劳德数Fr只影响高速区流速大小,表层横向流速平面分布接近扇形,最大横流可达试验流速的0.45倍;②横断面上纵向流速高速区位于一级丁坝坝头附近,强横流区位于二级丁坝前缘,均呈带状分布,b2越大,带宽越小,高速区分布更为集中;③纵剖面上纵向流速最大值出现在丁坝下游靠近水面附近,其沿程位置随b2的增大而上移,横向流速呈先增大后减小的变化,最大值出现在丁坝附近靠近槽底的部位,强横流区呈枫叶型分布。研究结果可为航道整治工程设计和丁坝水毁保护等提供参考。
Abstract
Spur dike with compound section is a common structure used in waterway regulation. In this paper, the law of velocity distribution around non-submerged spur dike with compound section is researched via flume experiment, and the results manifest that I) In surface layer, large resultant velocity appears outside the downstream of the first-stage spur dike head; the length (b2) of the second-stage spur has noticeable impact on the value and morphological distribution of the zone of large resultant velocity whereas Froude number (Fr) only affects the value of velocity; transverse surface velocity distributes in an approximated fan shape, with the maximum value up to 0.45 times of test velocity. (II) In cross-sectional scale, large longitudinal velocity is located in the adjacent of the head of the first-stage spur dike, and intense transverse velocity zone is in the front of the second-stage spur dike, both distributing in a band shape; with the increase of b2, the band width declines, and the distribution is more concentrated. (III) In longitudinal profile, the maximum longitudinal velocity is found in the downstream of the spur dike near water surface, and its position moves up along with the increase of b2; while the transverse velocity increases first and then decreases, with its maximum value arising close to the bottom; intense high transverse velocity zone stretches in a maple leaf shape.The research results provide reference for waterway regulation and spur dike protection.
关键词
非淹没丁坝 /
复式断面 /
纵向流速 /
横向流速 /
分布规律
Key words
non-submerged spur dike /
compound section /
longitudinal velocity /
transverse velocity /
distribution law
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钟 亮,孙建云,刘珺洁,等. 阶梯形丁坝下游回流规律分析. 水利水运工程学报,2017,(5):9-17.
[2]周鑫靖. 非淹没双级复式断面丁坝三维水流特性研究. 重庆:重庆交通大学,2016.
[3]周宜林,道上正规,桧谷治. 非淹没丁坝附近三维水流运动特性的研究. 水利学报,2004,(8):46-53.
[4]周宜林. 淹没丁坝附近三维水流运动大涡数值模拟. 长江科学院院报,2001,18(5):28-31,36.
[5]冯民权,郑邦民. 定床上丁坝流场数值模拟. 水力发电学报,2005,24(6):78-82.
[6]DUAN J G, HE LI, FU X D, et al. Mean Flow and Turbulence Around Experimental Spur Dike. Advances in Water Resources, 2009, 32(12):1717-1725.
[7]于守兵,陈志昌,韩玉芳. 淹没丁坝端坡对附近水流结构的调整作用. 水动力学研究与进展(A辑),2012,27(1):39-46.
[8]于守兵,陈志昌,韩玉芳. 非淹没丁坝端坡对附近水流结构的调整作用. 水利水运工程学报,2012,(3):44-49.
[9]李冰冻,李 嘉,李克锋. 丁坝水流的水槽试验及数值模拟研究. 水动力学研究与进展(A辑),2013,28(2):176-183.
[10]孙志林,於刚节,许 丹,等. 正态曲面丁坝三维水流数值模拟. 浙江大学学报(工学版),2016,50(7):1247-1251.
[11]张柏山,吕志咏,祝立国. 绕丁坝流动结构实验研究. 北京航空航天大学学报,2002,28(5):585-588.
[12]白 静,方红卫,何国建. 非淹没丁坝绕流的三维大涡模拟研究. 力学学报,2013,45(2):151-157.
[13]李子龙,寇 军,张景新. 明渠条件下单丁坝绕流特征的数值模拟. 计算力学学报,2016,33(2):245-251.
[14]鲁远征,吴加学,刘 欢. 河口底边界层湍流观测后处理技术方法分析. 海洋学报,2012,34(5):39-49.
基金
重庆市基础科学与前沿技术研究项目(CSTC2017jcyjAX0278);国家自然科学基金项目(51509026)