藏东南地区气候环境复杂,地质条件恶劣,广为分布的堆积体斜坡易在多种极端条件诱发下失稳,具有较大的潜在风险。为研究复杂环境条件对滑坡的诱发作用,提出一种能够考虑多种诱发因素耦合作用的滑坡危险性评价方法。以地震和降雨为例,分别考虑了诱发因素自身的随机性与诱发作用的不确定性,通过分析不同危险性量级诱发事件的发生概率与回归周期,结合蒙特卡罗模拟计算对应诱发作用下的斜坡失稳概率,揭示不同程度的危险性序列。在此基础上利用全概率公式进行多致灾因素的耦合计算,系统评价堆积体斜坡的危险性与潜在风险。并以川藏交通廊道沿线某典型堆积体斜坡为算例,其结果表明:耦合计算结果为中等危险等级,总的规律表现为诱发事件组合越极端,其综合危险性反而越低。
Abstract
Deposit slope, which widely distributes in southeast Tibet with complex climate condition and harsh geological condition, poses large potential risk due to multiple extreme factors. To investigate into the effect of complex environment on slope failure, a hazard evaluation method in consideration of coupled multiple triggering factors is proposed. The probability and return period of triggered events of different hazard levels are analyzed, and on this basis, the failure probability corresponding to different events is calculated by Monte Carlo simulation techniques. In the meantime, the stochastic characteristic of triggering factors and the uncertainty involved in the inducing process are considered. Furthermore, multiple factors are coupled with the law of total probability, thus the hazard degree and potential risk of deposit slope can be comprehensively assessed. Earthquake and rainfall, as two explicit scenarios, are incorporated into a real engineering case as an example. The results suggest that the hazard level of the case is moderate; and in general, when the combination of triggering factors gets more extreme, the comprehensive hazard level is smaller.
关键词
堆积体斜坡 /
回归周期 /
失稳概率 /
降雨诱发 /
地震诱发 /
蒙特卡罗模拟
Key words
deposit slope /
return period /
probability of failure /
rainfall-induced landslide /
earthquake-induced landslide /
Monte Carlo simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘盛健. 川藏公路地质灾害危险性评价[D]. 重庆:重庆交通大学, 2011.
[2] 朱平一,何子文,汪阳春,等. 川藏公路典型山地灾害研究[M]. 成都: 成都科技大学出版社, 1999.
[3] 廖秋林,李 晓,董艳辉,等. 川藏公路林芝—八宿段地质灾害特征及形成机制初探[J]. 地质力学学报, 2004, 33(1): 33-39.
[4] 何朋朋,姚磊华,周平根,等. 多随机因素条件下的峡口滑坡可靠性分析[J]. 岩土工程学报, 2010,32(6): 930-937.
[5] 张璐璐,邓汉忠,张利民. 考虑渗流参数相关性的边坡可靠度研究[J]. 深圳大学学报(理工版), 2010, 27(1): 114-119.
[6] TUNG Y K,CHAN G C C. Stochastic Analysis of Slope Stability Considering Uncertainty of Soil-water Retention Characteristics[J]. Applications of Statistics and Probability in Civil Engineering, 2003, 1/2:1409-1414.
[7] 蒋水华,李典庆,周创兵,等. 考虑参数空间变异性的非饱和土坡可靠度分析[J]. 岩土力学, 2014, 35(9): 2569-2578.
[8] 王 贺,张 洁,陈飞扬. 强降雨条件下花岗岩残积土边坡的时变可靠度[J]. 武汉大学学报(工学版), 2016, 49(5): 763-767.
[9] FELL R,COROMINAS J,BONNARD C,et al. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land-use Planning[J]. Engineering Geology, 2008, 102(3): 99-111.
[10]陈丽霞,殷坤龙,刘长春. 降雨重现期及其用于滑坡概率分析的探讨[J]. 工程地质学报, 2012, 20(5): 745-750.
[11]鲍叶静,高孟潭,姜 慧. 地震诱发滑坡的概率分析[J]. 岩石力学与工程学报, 2005, 24(1): 66-70.
[12]DAI F C,LEE C F,NGAI Y Y. Landslide Risk Assessment and Management: An Overview[J]. Engineering Geology, 2002, 64(1): 65-87.
[13]黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.
[14]黄润秋,戚国庆. 非饱和渗流基质吸力对边坡稳定性的影响[J]. 工程地质学报, 2002, 10(4): 343-348.
[15]FREDLUND D G, XING A, HUANG S. Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve[J]. Canadian Geotechnical Journal, 1994, 31(4), 533-546.
[16]王 涛,吴树仁,石菊松,等. 地震滑坡危险性概念和基于力学模型的评估方法探讨[J]. 工程地质学报, 2015, 23(1): 93-104.
[17]JIBSON R W. Methods for Assessing the Stability of Slopes during Earthquakes—A Retrospective[J]. Engineering Geology, 2011, 122(1/2): 43-50.
[18]徐光兴,姚令侃,李朝红,等. 边坡地震动力响应规律及地震动参数影响研究[J]. 岩土工程学报, 2008, 30(6): 918-923.
[19]JIBSON R. Predicting Earthquake-induced Landslide Displacements Using Newmark’s Sliding Block Analysis[J]. Transportation Research Record, 1993, (1411):9-17.
[20]AMBRASEYS N N,MENU J M. Earthquake-induced Ground Displacements[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(7): 985-1006.
[21]JIBSON R W. Regression Models for Estimating Coseismic Landslide Displacement[J]. Engineering Geology, 2007, 91(2): 209-218.
[22]RATHJE E M,SAYGILI G. Probabilistic Seismic Hazard Analysis for the Sliding Displacement of Slopes: Scalar and Vector Approaches[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 804-814.
[23]RATHJE E M,SAYGILI G. Probabilistic Assessment of Earthquake-induced Sliding Displacements of Natural Slopes[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42(1): 18-27.
[24]RATHJE E M,SAYGILI G. Estimating Fully Probabilistic Seismic Sliding Displacements of Slopes from a Pseudoprobabilistic Approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(3): 208-217.
[25]REFICE A,CAPOLONGO D. Probabilistic Modeling of Uncertainties in Earthquake-induced Landslide Hazard Assessment[J]. Computers & Geosciences, 2002, 28(6): 735-749.
[26]陈 语,李天斌,魏永幸,等. 沟谷型滑坡灾害链成灾机制及堵江危险性判别方法[J]. 岩石力学与工程学报, 2016, 35(增2): 4073-4081.
[27]张玉虎,王琛茜,刘凯利,等. 不同概率分布函数降雨极值的适用性分析[J]. 地理科学,2015,35(11): 1460-1467.
[28]徐卫亚, 张志腾. 滑坡失稳破坏概率及可靠度研究[J]. 灾害学, 1995,(4):33-37.
[29]JIBSON R W,HARP E L,MICHAEL J A. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps[J]. Engineering Geology, 2000, 58(3): 271-289.
基金
国家自然科学基金青年基金项目(41602304)