为了对天津蓟县泥石流区域进行预报,以天津蓟县部分乡镇作为研究区域,并进行网格自动划分,得到了网格的节点-单元-通道信息。通过分析泥石流形成条件选取了泥石流发生频率、24 h雨量、1 h雨量、地质岩性、平均坡度、植被覆盖类型、人口密度7个危险因子,并应用模糊赋权法计算各个危险因子权重,从而建立了泥石流区域预报模型,最后根据计算出的各个网格危险等级对2012年在蓟县双安地区发生的泥石流进行了模拟。结果表明:北部山区泥石流危险度Rd在0.4~0.8之间,属于中度、高度危度险区,双安泥石流灾害点处于高度危险区内,模拟结果与实际情况一致。由此可见该模型具有一定可靠性,可以用于天津蓟县北部山区泥石流的预报。
Abstract
In the aim of predicting debris flow in Jixian county of Tianjin, some townships in the county were taken as study area, and area grid was automatically divided, then the node-cell-channel information was generated. By analyzing the formation conditions of debris flow, 7 risk factors of debris flow were selected ,namely occurrence frequency of debris flow, 24 h rainfall, 1 h rainfall, geological lithology, average slope gradient, vegetation cover type and population density. In association with fuzzy weighting method, the weight of each risk factor was calculated and a prediction model of debris flow was established. Furthermore, the debris flow occurred in Shuang’an area of Jixian county in 2012 was simulated according to the calculated risk level of each grid. Results show that in the northern mountainous area of the county, the hazard degree of debris flow Rd varies from 0.4 to 0.8, indicating medium risk and high risk. The hazard point of Shuang’an debris flow is located at a high-risk area, and the simulated results are in accordance with the actual conditions. The model has certain reliability and can be used to forecast the debris flow in the mountainous area of northern Jixian county of Tianjin.
关键词
泥石流 /
危险因子 /
权重 /
模糊赋权法 /
预报模型
Key words
debris flow /
risk factor /
weight /
fuzzy weighting method /
forecast model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱 宁,万兆惠. 泥沙运动力学[M] . 北京:科学出版社, 1983: 80-100.
[2] TANG C, ZHU J, LI W L, et al. Rainfall-triggered Debris Flows Following the Wenchuan Earthquake[J] . Bulletin of Engineering Geology and the Environment, 2009, 68(2): 187-194.
[3] 谭万沛. 泥石流沟的临界雨量线分布特征[J] . 水土保持通报, 1989,9(6): 21-26.
[4] 吴积善,康志成,田连权,等. 云南蒋家沟泥石流观测研究[M] . 北京:科学出版社, 1990: 251.
[5] ANDERSON S A, SITAR N. Analysis of Rainfall-Induced Debris Flows[J] . Journal of Geotechnical Engineering, 1995,121(7): 544-552.
[6] PANG B D. The Characteristics of Rainfall and Disasters of Debris Flow in Beijing Area[J] . International Journal of Sediment Research,1997, 12(3) :47-53.
[7] 崔 鹏,杨 坤,陈 杰. 前期降雨对泥石流形成的贡献——以蒋家沟泥石流形成为例[J] . 中国水土保持科学, 2003,1(1): 11-15.
[8] 韦方强,胡凯衡,陈 杰. 泥石流预报中前期有效降水量的确定[J] . 山地学报, 2005, 23(4): 453-457.
[9] 张平仓,任洪玉,胡维忠,等. 中国山洪灾害区域特征及防治对策[J] . 长江科学院院报,2007,24(2):9-12,21.
[10] 田 冰,王裕宜,洪 勇. 泥石流预报中前期降水量与始发日降水量的权重关系——以云南省蒋家沟为例[J] . 水土保持通报, 2008,28(2): 71-75.
[11] 倪化勇,王德伟. 基于雨量(强)条件的泥石流预测预报研究现状、问题与建议[J] . 灾害学,2010,25(1): 124-128.
[12] 师 哲,张平仓,舒安平. 泥石流监测预报预警系统研究[J] . 长江科学院院报,2010,27(11):115-119.
[13] XU W, YU W, ZHANG G. Prediction Method of Debris Flow by Logistic Model with Two Types of Rainfall: A Case Study in the Sichuan, China[J] . Natural Hazards, 2012, 62(2): 733-744.
[14] 张少杰,江玉红,杨红娟,等. 基于水文过程的泥石流预报中前期有效降水量的确定方法[J] . 水科学进展, 2015,26(1): 34-43.
[15] 蔡道明,肖 翔,孙金伟.区域山洪灾害预警难度评价——以长江流域为例[J] .长江科学院院报,2015,32(3): 84-88,94.
[16] 胡 翔. 泥石流危险性评价研究[D] . 昆明:昆明理工大学, 2014.
[17] XU F, YANG X, ZHOU J. An Empirical Approach for Evaluation of the Potential of Debris Flow Occurrence in Mountainous Areas[J] . Environmental Earth Sciences, 2014, 71(7): 2979-2988.
[18] 高延超,李明辉,王东辉,等. 植被对不同类型泥石流的抑制作用初探[J] . 水土保持研究,2013,20(5): 291-295,299.
[19] 何志虎. 基于Fuzzy-AHP法的泥石流评价方法及其应用研究[D] . 广州:华南理工大学, 2012.
[20] 蔡 雷,方 昕,王维学. 建模与仿真中权重的确定方法[J] . 教学与科技,2009,(4): 17-21.
[21] 张吉军. 现代决策分析方法及其应用[M] . 成都:四川大学出版社, 2001: 60-88.
基金
国家自然科学创新研究群体科学基金项目(51321065);天津地质灾害风险预警技术集成与应用项目(CMAGJ2015M03);天津市科委应用基础与前沿技术研究计划项目(15JCYBJC22300)