济南西北部为黄河下游冲积黏-砂互层地质结构,深基坑稳定性受地层条件影响较大,土层质量直接影响围护桩插入比的取值。以山东省会文化艺术中心深基坑为工程背景,通过理论计算和数值模拟对桩体在不同插入比下的稳定性进行分析。研究发现:土层质量参数与插入比存在线性关系,可引入土压力折减系数计算围护桩入土深度;通过实际工程数值分析得到最佳插入比为0.55;根据现场0.58插入比实测数据对数值模拟进行验证,结果发现桩顶侧向位移最大值为0.05%H(H为基坑深度),沉降最大值为0.04%H,基坑结构足够稳定且有相当大的安全储备,因此,可减小插入比以降低工程造价,缩短施工工期,实现工程的绿色建设。研究成果对济南特殊的黄河冲积层地区深基坑建设具有借鉴意义。
Abstract
The stability of excavation pit in northwest Ji’nan, which locates in alluvial clayey-sand interbedded zone of downstream Yellow River, is greatly affected by soil strata. The pile insertion ratio (defined as the pile length above excavation bottom to the length below excavation bottom) is directly affected by soil strata quality. In this article, the stability of support piles with different insertion ratios are analyzed through theoretical calculation and numerical simulation. The excavation pit at the Shandong Provincial Cultural and Arts Center is taken as engineering background. Research results reveal that parameters of soil strata quality are in linear relations with insertion ratio. By introducing the earth pressure reduction coefficient into the calculation of embedded depth of pile, we found that the optimum insertion ratio is 0.55. According to measured insertion ratio 0.58, the numerical result is verified. The maximum lateral displacement of pile top is 0.05% of the pit depth (H), and maximum settlement 0.04%H, indicating that the excavation structure is stable enough with sufficient safety reserve. Therefore, the insertion ratio in the study case can be reduced to cut project cost and shorten construction period. The research results are of reference value for excavation pit construction in special alluvial areas of the Yellow River.
关键词
深基坑 /
围护桩 /
黄河冲积层 /
结构变形 /
插入比 /
优化分析
Key words
deep foundation /
supporting pile /
the Yellow River alluvium /
structural deformation /
insertion ratio /
optimization analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]POH T Y, WONG I H, CHANDRASEKARAN B. Performance of Two Propped Diaphragm Walls in Stiff Residual Soils[J]. Journal of Performance of Constructed Facilities, 1997, 11(4): 190-199.
[2] 高新南, 刘松玉, 童立元. 苏州地铁车站基坑多支点咬合桩插入比分析[J]. 东南大学学报, 2012, 42(3) : 352-357.
[3] 李 淑, 张项立, 房 倩, 等. 北京地铁车站深基坑地表变形特性研究[J]. 岩石力学与工程学报, 2012, 31(1): 189-198.
[4] 杨 将, 彭加强, 周奇辉, 等. 基于单因素分析的某深基坑优化设计[J]. 铁道工程学报, 2009, 126(3): 84-88.
[5] 陈 斌, 施 斌, 林 梅, 等. 南京地铁软土地层咬合桩围护结构的技术研究[J]. 岩土工程学报, 2005,27(3): 354-357.
[6] 武朝军, 陈锦剑, 叶冠林, 等. 苏州地铁车站深基坑变形特性分析[J]. 岩土工程学报, 2010, 32(7): 458-462.
[7] 李四维, 高华东, 杨铁灯. 深基坑开挖现场监测与数值模拟分析[J]. 岩土工程学报, 2011, 33(8): 284-291.
[8] 徐 飞, 王渭明, 张乾青, 等. 黄河冲积平原地区超大型深基坑开挖现场监测分析[J]. 岩土工程学报, 2014, 36(11): 471-478.
[9] 杨校辉, 朱彦鹏, 郭 楠, 等. 地铁车站深基坑桩锚支护结构内力试验研究[J]. 岩土力学, 2014, 35(10):185-197.
[10]陈力华, 靳晓光. 有限元强度折减法中边坡三种失效判据的适用性研究[J]. 土木工程学报, 2012, 45(9):136-146.
[11]陈国庆, 黄润秋, 周 辉,等. 边坡渐进破坏的动态强度折减法研究[J].岩土力学, 2013, 34(4): 1140-1146.
[12]GB 50009—2012,建筑结构荷载规范[S]. 北京:中国建筑工业出版社,2012.
[13]陆培毅, 刘 畅.弹性抗力法确定支护结构插入深度的研究[J]. 岩土力学, 2002, 23(6):750-753.
[14]高夕良.地下连续墙入土深度的分析[J]. 铁道工程学报, 2008, 4(4): 28-31.
[15]王国富, 王 丹,路林海,等.基于改进西原模型的厚冲积地层基坑结构回弹参数敏感性分析[J].长江科学院院报, 2016, 33(10): 84-92.
[16]黄钰皓,陈 健,柯文汇,等. 基于时间效应理论的软土深基坑变形分析[J]. 长江科学院院报, 2017, 34(5):75-80.
基金
山东省自然科学基金项目(ZR2017MEE065);住房城乡建设部研究开发项目(2016-K4-053);住房城乡建设部科技示范工程项目(2016-S3-008);山东省住房和城乡建设厅科学技术项目(2016-KY026,2017-K2-011,2017-K2-012,2017-K4-009,FW-20161001:A7);济南市优秀创新团队项目(济政字[2016]40号)