窄缝消能工(STED)是一种结构简单、消能高效率的消能设施,广泛应用于高水头、大流量及窄河谷条件的水利工程。然而,由收缩段中冲击波造成的水翅作为窄缝消能工的一种特殊水力现象,将给下游岸坡稳定性和建筑安全带来危害,而由水翅造成的危害没有引起足够的重视,因此有必要对冲击波的形成机制及由此造成的水翅的运动特性进行专门研究。通过模型试验深入研究流态,结合理论分析揭示了窄缝消能工冲击波和水翅之间的内在联系。通过加入修正系数的方式将Ippen理论应用于窄缝消能工中,提出了冲击波波角的简化计算公式和水翅影响范围的估算方法。模型试验的结果显示该估算方法能够精确反映水翅的影响范围,计算相对误差在5%以内。
Abstract
Slit-type energy dissipator is widely used in hydraulic projects of high water head, large discharge, and narrow river valley due to its simple structure and high efficiency. The water wing caused by shock waves in the contracted section of slit-type energy dissipator may bring about harmful effects, which, however, has not received sufficient attention. In this article, the hydraulic characteristics of slit-type energy dissipator are investigated by means of physical model and theoretical analysis to reveal the internal relation between shock waves and water wings. A correction coefficient is introduced for the application of Ippen’s theory to slit-type energy dissipator. The expression of the coefficient is obtained, and simplified formulas for shock wave angle and water wing scope are theoretically derived, which was verified accurate by experimental data, with the relative error within 5%.
关键词
窄缝消能工 /
水流冲击波 /
水翅 /
运动特性 /
模型试验
Key words
slit-type energy dissipator /
shock wave of flow /
water wing /
motion characteristics /
hydraulic modelling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHENG Chun-tian,SHEN Jian-jian,WU Xin-yu,et al. Operation Challenges for Fast-growing China’s Hydropower Systems and Respondence to Energy Saving and Emission Reduction[J]. Renewable and Sustainable Energy Reviews,2012,16(5): 2386-2393.
[2] 李乃稳,许唯临,周茂林,等.高拱坝坝身表孔和深孔水流无碰撞泄洪消能试验研究[J].水利学报,2008,39(8):927-933.
[3] 肖兴斌.窄缝式消能工在高坝消能中的应用与发展综述[J].水电站设计,2004,20(3):76-81.
[4] 陈忠儒,陈义东,黄国兵.窄缝式挑坎体型研究及其挑流水舌距离的估算[J].长江科学院院报,2002,19(4):11-14.
[5] 马吉明,张永良,郑双凌.水布垭工程差动窄缝挑坎型溢洪道水力特性的试验研究[J].水力发电学报,2007,26(3):93-98.
[6] 张彦法,吴文平.窄缝挑坎水面线及水舌挑距的试验研究[J].水利学报,1989,(5):14-21.
[7] 戴震霖,于月增.深孔窄缝挑流水力参数及挑距的研究[J].陕西水力发电,1992,8(1):7-13.
[8] WU Jian-hua,MA Fei,YAO Li. Hydraulic Characteristics of Slit-type Energy Dissipaters[J]. Journal of Hydrodynamics,2012,24(6): 883-887.
[9] WU Jian-hua, WAN Bin, MA Fei, et al. Flow Choking Characteristics of Slit-type Energy Dissipaters[J]. Journal of Hydrodynamics,2015,27 (1):159-162.
[10]柳 杨,马 飞,吴建华.窄缝坎的冲击波及水舌入水宽度的计算[J].水利水电科技进展, 2014,34(3):20-23.
[11]黄智敏,何小惠,朱红华,等.窄缝式挑坎体型及动水压强特性分析[J].中国农村水利水电,2006,(5):69-71,74.
[12]LUO Bei-er,WANG Jun-xing,ZHANG Ying-ying. Researches on the Chaotic Characteristics of Fluctuating Pressure in Slit-type Energy Dissipator[J]. Advanced Materials Research,2014,1025/1026: 1150-1159.
[13]IPPEN A T. Gas-wave Analogies in Open Channel Flow[C]∥University of Iowa.Proceedings of the 2nd Hydraulics Conference. Iowa, June 1-4, 1942:248-265.
[14]HAGER W H,BRETZ N V.Discussion of “Simplified Design of Contractions in Supercritical Flow” by Terry W. Strum[J].Journal of Hydraulic Engineering,1987, 113(3): 422-427.
[15]HAGER W H, SCHWALT M, JIMENEZ O,et al. Supercritical Flow near an Abrupt Wall Deflection[J]. Journal of Hydraulic Research, 1994,32(1):103-118.
[16]刘韩生,倪汉根.急流冲击波简化式[J].水利学报,1999,21(6):56-60.
基金
国家自然科学基金项目(51709014);国家重点研发计划项目(2016YFC0401904);中央级公益性科研院所基本科研业务费专项(CKSF2017055/SL,CKSF2017011/SL)