基于PFC2D的岩土体孔隙统计算法分析

袁俊平,史宇宙,丁国权,王强林

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (11) : 61-65.

PDF(4624 KB)
PDF(4624 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (11) : 61-65. DOI: 10.11988/ckyyb.20160795
岩土工程

基于PFC2D的岩土体孔隙统计算法分析

  • 袁俊平a,b,史宇宙a,b,丁国权a,b,王强林a,b
作者信息 +

Statistical Algorithms for Pore Size Distribution of Rock-soil Mass Based on PFC2D

  • YUAN Jun-ping1, 2, SHI Yu-zhou1, 2, DING Guo-quan1, 2, WANG Qiang-lin1, 2
Author information +
文章历史 +

摘要

为了研究岩土材料微观孔隙结构特性,从机理上认识和掌握其宏观工程性质及其变化规律,基于PFC2D模拟岩土材料孔隙结构,对像素颗粒填充法的计算误差、像素颗粒尺寸选择及孔隙统计算法等进行了研究。研究结果表明:综合考虑误差控制与计算效率,建议最小土石颗粒半径的1/20为适合的像素颗粒半径;对比孔隙体积统计的3种算法发现,舍入法是相对最优算法。在此基础上实现了等效孔径分布的统计,为三维孔隙结构模型的研究提供了理论依据,为进一步对岩土材料孔隙结构特性及其与宏观力学行为和工程性质间关系的研究提供了基础。

Abstract

The purpose of this research is to obtain the microscopic structural characteristics and the variation rules of macroscopic engineering properties of rock and soil materials. We discussed the issues of statistical error, pixel size, and statistical algorithms for pixel-particle-filling method by simulating pore structures in rock and soil samples using PFC2D (2-dimensional particle flow code). Results show that taking into account both statistical error and algorithmic efficiency, we recommend 1/20 of the radius of the smallest particle as the proper radius for pixel-particle-filling used for pore structure statistics. We also compared three pore volume statistical algorithms and found that round-off method is the optimal. Moreover, we proposed a method to obtain the curve of equivalent pore size distribution, based on which further research works are able to be conducted on the 3D pore structures model, the characteristics of the pore structures and the relationship among these characteristics and macro-mechanical behaviors and engineering properties of rock-soil.

关键词

孔隙结构 / 像素颗粒填充法 / 二维颗粒流软件 / 等效孔径分布曲线 / 舍入法

Key words

pore structure / pixel-particle-filling method / PFC2D / equivalent pore size distribution curve / round-off method

引用本文

导出引用
袁俊平,史宇宙,丁国权,王强林. 基于PFC2D的岩土体孔隙统计算法分析[J]. 长江科学院院报. 2017, 34(11): 61-65 https://doi.org/10.11988/ckyyb.20160795
YUAN Jun-ping, SHI Yu-zhou, DING Guo-quan, WANG Qiang-lin. Statistical Algorithms for Pore Size Distribution of Rock-soil Mass Based on PFC2D[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(11): 61-65 https://doi.org/10.11988/ckyyb.20160795
中图分类号: TU43   

参考文献

[1] 程亚南, 刘建立, 张佳宝. 土壤孔隙结构定量化研究进展[J]. 土壤通报, 2012,43(4): 988-994.
[2] 高建伟, 余宏明, 钱玉智, 等. 重塑黄土崩解特性试验研究[J]. 长江科学院院报, 2014, 31(10): 146-150,155.
[3] WATABE Y, LEROUEIL S, BIHAN J P L. Influence of Compaction Conditions on Pore-size Distribution and Saturated Hydraulic Conductivity of a Glacial Till[J]. Canadian Geotechnical Journal, 2000, 37(6): 1184-1194.
[4] 田 华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012,33(3): 419-427.
[5] PERRET J, PRASHER S O, KANTZAS A, et al. Preferential Solute Flow in Intact Soil Columns Measured by SPECT Scanning[J]. Soil Science Society of America Journal, 2000, 64(2): 469-477.
[6] ELLIOT T R, HECK R J. A Comparison of Optical and X-ray CT Technique for Void Analysis in Soil Thin Section[J]. Geoderma, 2007, 141(1/2): 60-70.
[7] MANTLE M D, SEDERMAN A J, GLADDEN L F. Single and Two-phase Flow in Fixed-bed Reactors: MRI Flow Visualization and Lattice-Boltzmann Simulations[J]. Chemical Engineering Science, 2001, 56(2): 523-529.
[8] 李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012,31(6): 1208-1214.
[9] VOGEL H J. A Numerical Experiment on Pore Size, Pore Connectivity, Water Retention, Permeability, and Solute Transport Using Network Models[J]. European Journal of Soil Science, 2000, 51(1): 99-105.
[10]PAN C X. Use of Pore-scale Modeling to Understand Flow and Transport in Porous Media[D]. North Carolina: University of North Carolina at Chapel Hill, 2003.
[11]NAVI P, PIGNAT C. Three-dimensional Characterization of the Pore Structure of a Simulated Cement Paste[J]. Cement and Concrete Research, 1999, 29(4): 507-514.
[12]徐文杰, 胡瑞林, 王艳萍. 基于数字图像的非均质岩土材料细观结构PFC2D模型[J]. 煤炭学报, 2007, 32(4): 358-362.
[13]丁秀丽, 李耀旭, 王 新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010,29(3): 477-484.
[14]金 磊, 曾亚武, 李 欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟[J]. 岩土工程学报, 2015,37(5): 829-838.
[15]张 翀, 舒赣平. 颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J]. 岩土工程学报, 2009, 31(8): 1281-1286.
[16]孔 亮, 陈凡秀, 李 杰. 基于数字图像相关法的砂土细观直剪试验及其颗粒流数值模拟[J]. 岩土力学, 2013, 34(10): 2971-2978.
[17]周 健, 池 永, 池毓蔚, 等. 颗粒流方法及PFC2D程序[J]. 岩土力学, 2000, 21(3): 271-274.
[18]顾馨允, 路新瀛. PFC3D模拟颗粒堆积体的孔隙连通性初步研究[J]. 混凝土, 2009,(5): 11-14.
[19]谈云志, 孔令伟, 郭爱国, 等. 压实过程对红黏土的孔隙分布影响研究[J].岩土力学,2010, 31(5):1427-1430.
[20]丁国权. 掺砾心墙料土-水特征曲线室内试验研究[D]. 南京:河海大学, 2011.

基金

国家自然科学基金项目(51378008);中央高校基本科研业务费项目(B15020060)

PDF(4624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/