长江科学院院报 ›› 2017, Vol. 34 ›› Issue (7): 82-86.DOI: 10.11988/ckyyb.20160691

• 岩土工程 • 上一篇    下一篇

综合图形权值法在滑坡变形预测中的应用研究

王兴科, 王 娟   

  1. 陕西铁路工程职业技术学院,陕西 渭南 714000
  • 收稿日期:2016-07-07 出版日期:2017-07-01 发布日期:2017-07-01
  • 作者简介:王兴科(1982-),男,河北石家庄人,讲师,硕士,主要从事土木工程方面的教学与研究工作,(电话)0913-2221326(电子信箱)524980530@qq.com。

Application of Comprehensive Graph Weight Method to Landslide Deformation Prediction

WANG Xing-ke, WANG Juan   

  1. Shaanxi Railway Institute,Weinan 714000,China
  • Received:2016-07-07 Published:2017-07-01 Online:2017-07-01

摘要: 为提高滑坡变形的预测精度,首先采用卡尔曼滤波对滑坡的变形数据进行去噪处理,分离出趋势项和误差项,再利用多种单项预测模型对趋势项进行预测,最后利用综合图形法确定组合权值,实现趋势项的组合预测;其次,利用神经网络模型对误差项进行预测,进而得到滑坡变形的预测值。结果表明:半参数卡尔曼滤波的效果最优,并通过组合预测有效地提高了预测精度,达到了对滑坡变形高精度及高稳定性预测的目的,验证了该预测模型的可行性和有效性。

关键词: 滑坡, 变形预测, 回归模型, 神经网络, 综合图形权值法

Abstract: The aim of this research is to improve the accuracy of predicting landslide deformation. Firstly, trend terms and error terms were isolated through denoising the deformation data by using Kalman filter. Then comprehensive graph weight method was employed to determine the combinatorial weights for trend terms. Furthermore, neural network model was adopted to the prediction for error terms. Results suggest that the effect of half parameters and half Kalman filter method is the optimum. The present model has improved prediction accuracy, and is verified to be of feasibility.

Key words: landslide, deformation prediction, regression model, neural network, comprehensive graphic weight method

中图分类号: