为了给多沙水库运行调度提供依据,降低水沙序列长度和随机性的影响,将小波变换应用于研究流域径流与含沙量的变化特性。采用db3小波对标准化径流与含沙量序列进行多分辨率分析,研究径流与含沙量变化的趋势性;选用复Morlet小波绘制出小波方差图,分析径流过程与含沙量过程存在的周期性。以崖羊山水电站所在的李仙江流域为例,针对电站坝址断面的月平均流量与含沙量序列进行小波分析,从低频重构序列的结果中可以看出该流域径流与含沙量的变化趋势;并结合当地的降雨量与水土保持状况分析,表明结果是合理的。根据小波方差图可以看出,崖羊山水电站所在流域径流过程与含沙量过程存在非常接近的显著周期,均为2 a左右,且两者变化周期具有同步性。研究结果表明小波分析是研究非平稳随机时间序列的有效方法。
Abstract
In the aim of providing basis for the operation of sandy reservoir and reducing the influences of length and randomness of flow and sediment series, wavelet transform was adopted to analyze the variation characteristics of flow and sediment series. Standardized monthly flow and sediment series were decomposed by Multi-resolution Analysis using the db3 wavelet function, and continuous wavelet transform was used to evaluate the periodic variations of the two standardized series using the complex valued Morlet function. The flow and sediment series at the dam site of Yayangshan Hydropower Station located in Lixianjiang watershed were taken as an example. The reconstruction of the lowest frequency part revealed the trend of the flow and sediment series. According to the local rainfall and soil and water conservation, the result is considered reasonable. Wavelet variances were obtained to identify the dominant period as 2-year approximately for both flow series and sediment series and reveal the synchronization between them. The results indicate that wavelet transform is effective for nonstationary stochastic series analysis.
关键词
小波变换 /
水沙序列 /
径流 /
含沙量 /
时间尺度 /
多分辨率分析 /
小波方差
Key words
wavelet transform /
flow and sediment series /
runoff /
sediment concentration /
time scale /
multi-resolution analysis /
wavelet variances
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁 晶. 随机水文学[M]. 北京: 中国水利水电出版社, 1997.
[2] 于 浩,张晓萍,李 锐. 延河流域径流和输沙周期变化特征的小波分析[J]. 中国水土保持科学, 2008, 6(4): 18-22.
[3] 王文圣,丁 晶,向红莲. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002, 13(4): 515-520.
[4] 刘建梅,王安志,裴铁璠,等. 杂谷脑河径流趋势及周期变化特征的小波分析[J]. 北京林业大学学报, 2005, 27(4): 49-55.
[5] 刘素一,权先璋,张勇传. 不同小波函数对径流分析结果的影响[J]. 水电能源科学, 2003, 21(1): 29-31.
[6] 孙延奎. 小波分析及其工程应用[M]. 北京:机械工业出版社,2009.
[7] BRADSHAW G A, MCINTOSH B A. Detecting Climate-induced Patterns Using Wavelet Analysis[J]. Environmental Pollution, 1994, 83(1): 135-142.
[8] MORLET J, ARENS G, FOURGEAU E, et al. Wave Propagation and Sampling Theory—Part I: Complex Signal and Scattering in Multilayered Media[J]. Geophysics, 1982, 47(2): 203-221.
[9] 蔺秋生,范北林,黄 莉. 宜昌水文站年径流量演变多时间尺度分析[J].长江科学院院报,2009,26(4):1-3.
[10] 薛小杰,王 煜. 小波分析在水文序列趋势分析中的应用[J]. 应用科学学报,2002, 20(4): 426-428.
基金
国家“十二五”科技支撑计划项目(2013BAB06B01)