一种新型SPH固壁边界处理的排斥力模型

周学君, 陈 丁, 唐 轶

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (7) : 54-59.

PDF(3101 KB)
PDF(3101 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (7) : 54-59. DOI: 10.11988/ckyyb.20160375
水力学

一种新型SPH固壁边界处理的排斥力模型

  • 周学君1,2, 陈 丁2, 唐 轶3
作者信息 +

A Repulsive Model for Solid Boundary Treatment in Smoothed Particle Hydrodynamics

  • ZHOU Xue-jun1,2, CHEN Ding2, TANG Yi3
Author information +
文章历史 +

摘要

边界排斥力法是光滑粒子流体动力学(SPH)固壁边界处理的方法之一,但由于缺乏统一的排斥力模型而制约其广泛应用。考虑将近场动力学(Peridynamics,PD)中描述颗粒间接触作用的短程排斥力引入到固壁边界处理模型中,提出一种新型SPH方法边界排斥力模型。通过Couette流和溃坝2个算例验证了排斥力模型的有效性。排斥力表达式简单,参数易于给定,为SPH方法中固壁边界处理提供新思路。

Abstract

Boundary repulsive method is one of the methods for solid boundary treatment in smoothed particle hydrodynamics (SPH), but the method is difficult to be widely applied due to the lack of unified repulsive model. The short-range repulsive force which describes the acting force between granules in Peridynamic (PD) is introduced to solid boundary treatment model to build a new boundary repulsive model in the framework of SPH. The reliability of the method is verified by two numerical simulation examples including Couette flow and dam-break. Moreover, the repulsive formulation is simple and the parameters are easy to be given. Therefore, the present method provides a new alternative for solid boundary treatment in SPH.

关键词

光滑粒子流体动力学(SPH) / 排斥力模型 / 近场动力学(PD) / 固壁边界 / Couette流

Key words

smoothed particle hydrodynamics (SPH) / repulsive model / peridynamic (PD) / solid boundary / Couette flow

引用本文

导出引用
周学君, 陈 丁, 唐 轶. 一种新型SPH固壁边界处理的排斥力模型[J]. 长江科学院院报. 2017, 34(7): 54-59 https://doi.org/10.11988/ckyyb.20160375
ZHOU Xue-jun, CHEN Ding, TANG Yi. A Repulsive Model for Solid Boundary Treatment in Smoothed Particle Hydrodynamics[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(7): 54-59 https://doi.org/10.11988/ckyyb.20160375
中图分类号: O242   

参考文献

[1] LUCY L B. A Numerical Approach to the Testing of the Fission Hypothesis[J]. The Astronomical Journal,1977,82(12): 1013-1024.
[2] GINGOLD R A,MONAGHAN J J. Smoothed Particle Hydrodynamics:Theory and Application to Nonspherical Stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
[3] LIU M B,LIU G R. Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments[J]. Archives of Computational Methods in Engineering,2010,17(1):25-76.
[4]MONAGHAN J J. Simulation Free Surface Flows with SPH[J]. Journal of Computational Physics, 1994,110(2): 399-406.
[5] LIBERSKY L D,PETSCHCK A G,CARNEY T C,et al. High strain Lagrangian Hydrodynamics: A Three-dimensional SPH Code for Dynamic Material Response[J]. Journal of Computational Physics,1993,109(1): 67-75.
[6] RANDLES P W,LIBERSKY L D. Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(1): 375-408.
[7] LIU M B, LIU G R. Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003: 138-141.
[8] LIU M B,LIU G R,LAM K Y. Investigations into Water Mitigations Using a Meshless Particle Method[J]. Shock Waves,2002,12(3):181-195.
[9] SILLING S A. Reformulation of Elasticity Theory for Discontinuities and Long-range Forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209.
[10]SILLING S A, EPTON M, WECKNER O, et al. Peridynamic States and Constitutive Modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184.
[11]黄 丹,章 青,乔丕忠,等. 近场动力学方法及其应用[J]. 力学进展,2010,40(4):448-459.
[12]KILIC B. Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials[D]. Tucson,USA: The University of Arizona, 2008.
[13]胡祎乐,余 音,汪 海. 基于近场动力学理论的层压板损伤分析方法[J]. 力学学报,2013,45(4): 624-628.
[14]章 青, 顾 鑫, 郁杨天. 冲击荷载作用下颗粒材料动态力学响应的近场动力学模拟[J]. 力学学报,2016,48(1):56-63.
[15]WECKNER O,ABEYARATNE R. The Effect of Long-range Forces on the Dynamics of a Bar[J]. Journal of the Mechanics & Physics of Solids,2005,53(3): 705-728.
[16]SILLING S A,ASKARI E. A Meshfree Method Based on the Peridynamic Model of Solid Mechanics[J]. Computers & Structures,2005,83(17/18):1526-1535.
[17]KILIC B. Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials[D]. Tucson,USA: The University of Arizona,2008.
[18]HUANG Dan,LU Guang-da,QIAO Pi-zhong. An Improved Peridynamic Approach for Quasi-static Elastic Deformation and Brittle Fracture Analysis[J]. International Journal of Mechanical Sciences,2015,(94/95):111-122.
[19]MONAGHAN J J. An Introduction to SPH[J]. Computer Physics Communications,1988,48(1): 89-96.
[20]LATTANZIO J C,MONAGHAN J J,PONGRACIC H,et al. Controlling Penetration[J]. SIAM Journal on Scientific and Statistical Computing,1986,7(2): 591-598.
[21]MORRIS J P,PATRICK J F,ZHU Y. Modeling Low Reynolds Number Incompressible Flows Using SPH[J]. Journal of Computational Physics,1997,136(1): 214-226.
[22]LOBOVSK L,BOTIA-VERA E,CASTELLANA F,et al. Experimental Investigation of Dynamic Pressure Loads during Dam Break[J]. Journal of Fluids & Structures,2013,48: 407-434.
[23]韩亚伟,强洪夫,赵玖玲,等. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型[J]. 物理学报,2013,62(4): 326-336.
[24]LIU Hu, QIANG Hong-fu, CHEN Fu-zhen,et al. A New Boundary Treatment Method in Smoothed Particle Hydrodynamics[J]. Acta Physica Sinica, 2015, 64(9):094701.

基金

国家自然科学基金项目(61462096);江苏省普通高校研究生科研创新计划项目(KYZZ16_0268);黄冈师范学院高级别培育项目(201617603)

PDF(3101 KB)

Accesses

Citation

Detail

段落导航
相关文章

/