为了得到较为真实的室内重塑砂土样,利用自制的落砂装置,开展一系列福建标准砂的砂雨法制样试验,研究落距、漏斗管径和细颗粒含量等因素对室内土工三轴试验砂样制备的影响。结果表明砂样相对密度随落距的增加而增加,而增速随落距的增加逐渐变缓并趋于稳定;相同落距下,漏斗管径越大,砂样的相对密度越小;漏斗管径的减小,可以得到较宽范围的砂样密度;随着砂土中细颗粒含量的增加,制备的砂样相对密度减小。利用牛顿第二定律和能量守恒定律能够较好地阐释落距、漏斗管径和细颗粒含量等因素对砂土制样的影响规律。采用225kV-3D微分辨率ICT对砂雨法制备的砂样进行细观扫描,并借助ImageJ软件,重构砂样三维模型,计算出沿砂样高度方向的每层孔隙占比,验证了砂雨法制备砂样的空间均匀性,并给出砂雨法制备室内三轴试样的合理化建议。
Abstract
The influences of drop height, funnel diameter and fine particles’ contents on sand specimen preparation for indoor geotechnical triaxial test were studied through preparation test of Fujian standard sand with self-manufactured air pluviation device. Results showed that the relative density of sand specimens increased with the increasing of drop height, and the growth rate slowed down and tended to be stable. The relative density of sand specimens decreased along with the increase of funnel diameter under the same drop height. A wider range of relative density can be achieved with the decrease of funnel diameter. The relative density of sand specimens decreased with the increasing of fine particles’ contents. The influences of drop height, funnel diameter and fine particles’ contents on the relative density of sand specimens can be well explained by Newton’s second law and conservation of energy. The gray image scanned with the 225 kV micro-computerized tomography of sand specimens prepared by air pluviation was analyzed by ImageJ software. The spatial homogeneity of sand specimens can be verified by reconstructing the three-dimensional model of sand specimens and calculating the proportion of sand pore area along the height of sand specimen. Furthermore, reasonable suggestions on preparing triaxial sand specimens were proposed.
关键词
砂雨法 /
砂样制备 /
砂土 /
CT扫描 /
均匀性
Key words
air pluviation /
sand preparation /
sand /
CT scanning /
homogeneity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB/T50123—1999, 土工试验方法标准[S]. 北京:中国计划出版社, 1999.
[2] DL/T5355—2006, 水电水利工程土工试验规程[S]. 北京:中国电力出版社, 2006.
[3] MIURA S, TOKI S. A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand[J]. Soils & Foundations, 1982, 22: 61-77.
[4] VAID Y P, NEGUSSEY D. Preparation of Reconstituted sand Specimens[C]∥Proceedings of the Symposium on Advanced Triaxial Testing of Soil and Rock. ASTM. Louisville, Kentucky, June 19-20, 1988.
[5] VAID Y P, NEGUSSEY D. Relative Density of Pluviated Sand Samples[J]. Soils & Foundations, 1984, 24:101-105.
[6] CHANEY R C, DEMARS K R, VAID Y P, et al. Influence of Specimen-Reconstituting Method on the Undrained Response of Sand[J]. Geotechnical Testing Journal, 1999, 22(3): 187-195.
[7] LAGIOIA R, SANZENI A, COLLESELLI F. Air, Water and Vacuum Pluviation of Sand Specimens for the Triaxial Apparatus[J]. Soil & Foundations, 2006, 46(1):61-67.
[8] 吴建平, 顾尧章. 砂雨法成型中影响试样密度的因素[J]. 水电自动化与大坝监测, 1990,(3):33-39.
[9] 马险峰, 孔令刚, 方 薇,等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014,(10):1791-1801.
[10]丛 郁, 马险峰, 袁聚云,等. 离心试验砂雨法试样制备研究[J]. 路基工程, 2014,(5):77-80.
[11]李 浩, 罗 强, 张 正,等. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, (10):1872-1878.
[12]董 良, 赵毅鑫. 基于CT图像的煤岩非均质性研究[C]∥北京力学会第19届学术年会论文集.北京:北京力学会学术委员会, 2013:312-313.
[13]程展林, 左永振, 丁红顺. CT技术在岩土试验中的应用研究[J]. 长江科学院院报, 2011, 28(3):33-38.
[14]李 波, 龚壁卫, 刘 军,等.基于CT技术的砂雨法制样的空间均匀性研究[C]∥第七届全国岩土工程物理模拟学术研讨会论文集.北京:中国水利学会岩土力学专业委员会物理模拟技术委员会, 2013:155-157.
[15]左永振, 程展林, 丁红顺. 基于CT技术的砾石土浸润试验研究[J]. 长江科学院院报, 2011, 28(2):28-31.
[16]冯 杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5):611-617.
[17]郑剑锋, 赵淑萍, 马 巍,等. CT检测技术在土样初始损伤研究中的应用[J]. 兰州大学学报:自然科学版, 2009, 45(2):20-25.
[18]刘小红, 晏鄂川, 朱杰兵,等. 三轴加卸载条件下岩石损伤破坏机理CT试验分析[J]. 长江科学院院报, 2010, 27(12):42-46.
[19]付国涛, 曹大泉, 赵 维,等. 锥束微焦点CT系统对比度灵敏度测量研究[J]. 原子能科学技术, 2012, 46(10):1270-1273.
[20]PEREZ J M M, PASCAU J. Image Processing with Image[J]. Biophotonics International, 2003, 11(5/6):36-42.
基金
国家自然科学基金项目(51579237, 51309027);江苏省自然科学基金项目(BK20131141);深部岩土力学与地下工程国家重点实验室基金项目(SKLGDUEK1110)