采用Shear Trac-II型直剪仪,对废旧轮胎橡胶颗粒与黏土混合土的剪切特性进行了研究,探讨了橡胶颗粒掺量、粒径对黏土混合土抗剪强度的影响,建立了抗剪强度指标与橡胶颗粒掺量及粒径之间的关系,并通过轻型压实法分析了混合土的压实指标。结果表明:混合土的最大干密度与最优含水率均随橡胶颗粒掺量增加逐渐减小,当掺量高于15%后,其减小趋势明显减弱。当橡胶颗粒掺量为40%时,混合土的抗剪强度最高,其抗剪强度较黏土提高了20%~40%。橡胶颗粒掺量低于20%时,增大橡胶颗粒粒径可使混合土的抗剪强度显著提高。混合土的黏聚力随掺量增加先增大后减小,内摩擦角则逐渐增大。在剪切过程中,试样表现出先剪缩后剪胀的特性,且在低压力、掺入大粒径橡胶颗粒时,其剪胀特性较明显。
Abstract
The shear properties of composite soil mixing clay with rubber particle of scrap are investigated by using direct shear apparatus Shear Trac-II. Effects of the scrap rubber particle contents and particle size on the shear strength of composite soil are analyzed. The relationships between shear strength indexes and rubber particle contents or particle sizes are established. Besides, compaction properties of composite soil are studied by light compaction tests. Results indicate that maximum dry densities and optimum water contents of composite soil decrease gradually with the increase of rubber particle contents. However, the reduction tendency significantly decreases when rubber particle content exceeds 15%. When rubber particle content is 40%, shear strength of composite soil reaches the highest increasing by 20%~40% compared with pure clay soil. Furthermore, increasing particle size could significantly enhance the shear strength of composite soil when particle contents are less than 20%. Additionally, cohesion of composite soil increases firstly and then decreases with the increase of particle contents, whereas internal friction angle increases gradually . During the shearing process, soil sample exhibits a property of shear shrinkage at first and then shear dilation. And shear dilation is obvious for composite soil mixed with large size particle in low vertical pressures.
关键词
废旧轮胎橡胶颗粒 /
黏土 /
混合土 /
橡胶颗粒掺量 /
压实特性 /
抗剪强度
Key words
rubber particle of scrap tire /
clay /
composite soil /
rubber particle content /
compaction characteristics /
shear strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯凌云, 袁 群, 马 莹. 橡胶混凝土力学性能的试验研究[J]. 长江科学院院报, 2015, 32(7): 115-118.
[2] PIERCE C E, BLACKWELL M C. Potential of Scrap Tire Rubber as Lightweight Aggregate in Flowable Fill[J]. Waste Management, 2003, 23(3): 197-208.
[3] ELDIN N N, SENOUCI A B. Use of Scrap Tires in Road Construction[J]. Journal of Construction Engineering and Management, 1992, 118(3): 561-576.
[4] LEE J H, SALGADO R, BERNAL A, et al. Shredded Tires and Rubber-Sand as Lightweight Backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132-141.
[5] FENG Z Y, SUTTER K G. Dynamic Properties of Granulated Rubber/Sand Mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
[6] ZOMBERG J G, CABRAL A R, VIRATJANDR C. Behaviour of Tire Shred Sand Mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241.
[7] KIM H K, SANTAMARINA J C. Sand-rubber Mixtures (Large Rubber Chips)[J]. Canadian Geotechnical Journal, 2008, 45(10): 1457-1466.
[8] VALDES J R, EVANS T M. Sand-rubber Mixtures: Experiments and Numerical Simulations[J]. Canadian Geotechnical Journal, 2008, 45(4): 588-595.
[9]BOSSCHER P J, EDIL T B, KURAOKA S. Design of Highway Embankments Using Tire Chips[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 295-304.
[10]CETIN H, FENER M, GUNAYDIN O. Geotechnical Properties of Tire-cohesive Clayey Soil Mixtures as a Fill Material[J]. Engineering Geology,2006,88(1/2):110-120.
[11]BOOMINATHAN A, HARI S. Liquefaction Strength of Fly Ash Reinforced with Randomly Distributed Fibers[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/12): 1027-1033.
[12]辛 凌, 刘汉龙, 沈 扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433.
[13]邹维列, 谢 鹏, 马其天, 等. 废弃轮胎橡胶颗粒改性膨胀土的试验研究[J]. 四川大学学报(工程科学版), 2011, 43(3): 44-48.
[14]孙树林, 魏永耀, 张 鑫. 废弃橡胶胶粉改良膨润土的抗剪强度研究[J]. 岩石力学与工程学报, 2009, 28(增1):3070-3076.
[15]SEDA J H, LEE J C, CARRARO A H. Beneficial use of Waste Tire Rubber for Swelling Potential Mitigation in Expansive Soils[C]∥Geo-Denver 2007:New Peaks in Geotecnics. Denver, Colorado, United States, February 18-21, 2007. New York: American Society of Civil Engineers, 2007:1-9.
[16]ZORNBERG J G, CABRAL A R, VIRATJANDR C. Behavior of Tire Shred Sand Mixture[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241.
[17]ASTM C127—04,Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate[S]. United States: West Conshohocken, 2004.
[18]GB/T 50123—1999,土工试验方法标准[S]. 北京: 中国计划出版社, 1999.
[19]EDIL T B, BOSSCHER P J. Engineering Properties of Tyre Chips and Soil Mixtures[J]. Geotechnical Testing Journal, 1994, 17(4): 453-464.
基金
国家自然科学基金项目(51379118);山东科技大学科研创新团队资助项目(2015TDJH104);山东科技大学研究生创新项目(SDKDYC170324)