粒子图像测速技术作为一种新的流场测速方法能够在不干扰流场的情况下获得整个流场的速度信息。粒子图像测速技术最关键的步骤在于粒子匹配。针对粒子密度分布不均匀、流场不同等实际情况,提出了混合算法,即结合互相关和松弛算法能够更准确地搜索粒子,进而对粒子进行匹配。对3种匹配算法的匹配概率进行比较分析,发现混合算法能更准确地分析粒子的运动状态,减少错误矢量的产生;另外,对松弛算法进行改进,通过优化筛选加权因子发现改进的松弛算法在运行速度上相比原始算法有了较大提高,匹配率与原始算法基本一致。
Abstract
As a new method of flow velocity measurement, particle image velocimetry (PIV) could obtain velocity information of the whole flow field without disturbing the flow field. The most critical step in PIV is particle matching. A hybrid algorithm combining cross-correlation algorithm and relaxation algorithm is proposed in view of the actual conditions of uneven distribution of particle density and different flow fields. The hybrid algorithm could search the particles more accurately so as to match the particles. The matching probabilities of three matching algorithms are compared and results suggest that the hybrid algorithm can analyze the motion state of particles more accurately and reduce the generation of error vectors. In addition, the relaxation algorithm is improved in this paper. By optimizing weighting factor, the running speed of the improved relaxation algorithm has greatly improved compared with the original algorithm, while the matching rate is basically consistent with the original algorithm.
关键词
流场速度 /
粒子图像测速 /
混合算法 /
超松弛迭代粒子追踪 /
粒子匹配 /
匹配概率
Key words
velocity of flow field /
particle image velocimetry /
hybrid algorithm /
particle tracking based on successive over relaxation /
particle matching /
matching probability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔 恒. 流体二维图像测速技术的研究[D].大连:大连理工大学,2006:15-21.
[2] BREVIS W,NIÑO Y,JIRKA G H. Integrating Cross-correlation and Relaxation Algorithms for Particle Tracking Velocimetry[J]. Experiments in Fluids,2011,50(1):135-147.
[3]OHMI K, LI H Y. Particle-tracking Velocimetry with New Algorithms[J].Measurement Science and Technology,2000,11(6):603-616.
[4] 杨福胜,张早校,王斯民,等. 粒子追踪测速(PTV)技术及其在多相流测试中的应用[J]. 流体机械,2014,(2):37-42.
[5] BAEK S J,LEE S J. A New Two-frame Particle Tracking Algorithm Using Match Probability[J]. Experiments in Fluids,1996, 22(1): 23-32.
[6] 张 洋,王 元,李志强. 结合双向法则的松弛迭代粒子追踪测速法[J]. 空气动力学学报,2010,28(3):250-254.
[7] KIM H B,LEE S J. Performance Improvement of Two-frame Particle Tracking Velocimetry Using a Hybrid Adaptive Scheme[J]. Measurement Science and Technology, 2002, 13(4): 573-582.
[8]KIMURA I,HATTORI A,UEDA M. Particle Pairing Using Genetic Algorithms for PIV[J].Journal of Visualization,2000,2(3/4):223-228.
基金
中央级公益性科研院所基本科研业务费专项基金(2011YQ070055)