采用微纳米气泡混凝气浮处理合肥塘西河藻水分离港新鲜藻水和陈藻水,考察混凝剂、停留时间等因素对微纳米气泡气浮藻水分离的影响。通过与分离港实际运行的加压溶气气浮法比较,研究最佳处理效果的试验参数,以期获得最佳的工艺条件。结果表明新鲜藻水和陈藻水使用混凝剂PAC的最佳用量分别为24,36 g/m3,气浮池最佳停留时间分别为30,40 min,对应的处理效果最好;新鲜藻水总磷(TP)、总氮(TN)、化学需氧量(COD)、悬浮物(SS)去除率分别达到96.50%,53.10%,85.70%,99.00%,陈藻水TP,TN,COD,SS去除率可分别达到98.40%,62.40%,65.60%,99.80%。微纳米气泡法处理效果优于加压溶气气浮法。
Abstract
Micro-nano bubble coagulation and air flotation process was adopted to treat the fresh and stale algae-laden waters coming from the algae and water separation port of Tangxi River in Hefei. Effects of coagulant and air retention time on the separation of algae and water were investigated. Through comparing the method with pressurized dissolved-air flotation which is in operation at present in the separation port, experimental parameters of the best treatment effect were explored to achieve the optimal process conditions. Results showed that the optimal dosage of coagulant PAC for fresh and stale algae-laden waters was 24 g/m3 and 36 g/m3, respectively, and the optimum air retention time in floatation pool was 30 min and 40 min,respectively. The removal rates of total phosphorus(TP), total nitrogen (TN), chemical oxygen demand (COD) and suspended solids (SS) of fresh algae-laden water reached 96.50%, 53.10%, 85.70%, 99.00%, respectively. And the removal rates of TP, TN, COD and SS of stale algae-laden water reached 98.40%, 62.40%, 65.60%, 99.80%, respectively. The treatment effect of micro-nano bubble air flotation was better than that of pressurized dissolved-air flotation.
关键词
微纳米气泡 /
藻水分离 /
混凝剂优选 /
混凝剂用量 /
气浮时间
Key words
micro-nano bubble /
separating algae from water /
coagulant optimization and selection /
coagulant dosage /
air flotation time
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郝玉芳.加压气浮法处理含油废水中溶气压力对出水水质的影响与应用研究[J].环境工程,2011,29(增):441-443.
[2] 袁 俊,朱光灿,吕锡武.气浮除藻工艺的比较及影响因素[J].净水技术,2012,31(6):25-28.
[3]王端洋,刘 丹,赵可卉,等.典型气浮净水设备评述[J].环境科学与技术,2011,34(9):82-87.
[4] 贾伟建,张克峰,王永磊,等.混凝—气浮处理低浊高藻水库水的试验研究[J].山东建筑大学学报,2015,30(1):41-46.
[5] 吴玉宝,王启山,王玉恒,等.混凝—气浮除藻工艺中混凝剂的选择[J].给水排水,2008,34(5):154-156.
[6] 黄 璐.油滴/气泡尺度对模拟含油废水气浮效果的影响[D].上海:东华大学,2012.
[7] 夏志然,胡黎明,赵清源.地下水原位修复的臭氧微纳米气泡技术研究[J].地下空间与工程学报,2014,10(增2):2006-2011.
[8] 李恒震,胡黎明,辛鸿博.微纳米气泡技术应用于污染地下水原位修复研究[J].岩土工程学报,2015,37(增2):115-120.
[9] 刘 春,张 磊,杨景亮,等.微气泡曝气中氧传质特性研究[J].环境工程学报, 2010,4(3):585-589.
[10]张立娟,陈 浩,李朝霞,等.纳米气泡的长寿源于其高的内部密度[J].中国科学:物理学 力学 天文学,2007,37(4):556-560.
[11]柳 姝,黄培坤,汪群慧,等.混凝微纳米气泡气浮法处理含藻废水的研究[J].环境工程学报,2008,2(12):1639-1643.
[12]张奎兴,罗建中.超微米气泡技术应用于黑臭河水质处理试验研究[J].环境工程,2014,20(7):30-32.
[13]李青云,林 莉,汤显强,等.湖库富营养化水体移动式水质净化平台关键技术构建研究[J].长江科学院院报,2014,31(10):28-33.
[14]杨忠莲,高宝玉,岳钦艳,等.铝盐混凝剂的混凝效果与残留铝含量和组分之间的关系研究[J].环境科学,2010,31(6):1542-1547.
[15]包木太,陈国庆,王 娜,等.油田污水中聚丙烯酰胺(HPAM)的降解机理研究[J].高分子通报,2008,2(11):1-9.
[16]曹佳红,陈为庄.城市污水处理厂出水的化学需氧量和悬浮物的相关关系以及悬浮物测定方法探讨[J].四川环境,2003,22(6):39-40.