基于PSO-SVM算法的高放废物处置北山预选区岩爆预测

仝跃, 陈亮, 黄宏伟

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (5) : 68-74.

PDF(2413 KB)
PDF(2413 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (5) : 68-74. DOI: 10.11988/ckyyb.20160058
岩土工程

基于PSO-SVM算法的高放废物处置北山预选区岩爆预测

  • 仝跃1a,1b, 陈亮2, 黄宏伟1a,1b
作者信息 +

Rockburst Prediction of Beishan Pre-selected Area for Disposal of High-level Radioactive Waste Based on PSO-SVM

  • TONG Yue1, 2, CHEN Liang3, HUANG Hong-wei1, 2
Author information +
文章历史 +

摘要

为安全处置高放废物,我国拟在花岗岩体中建造埋深500 m左右的地下实验室,用以开展处置前期的相关研究。而岩爆作为深部岩石工程中一种常见的动力破坏现象,多造成严重后果。为指导地下实验室场址的筛选以及工程的安全设计施工,基于粒子群优化的支持向量机(PSO-SVM)和100组岩爆实测数据,结合北山预选区旧井、芨芨槽、新场3个候选场址的地应力值和岩体力学参数,以洞壁围岩最大切向应力σθ、岩石单轴抗压强度σc、岩石单轴抗拉强度σt、应力指数Ts、脆性指数B作为评判参数,对不同场址处竖井和隧道开挖的岩爆风险进行预测分析。结果表明:PSO-SVM算法用于岩爆预测是可行的;在埋深300~600 m范围内新场场址处工程开挖岩爆风险最低,以新场作为我国高放废物地下实验室的建设场址是最安全的。

Abstract

For the safe disposal of high-level radioactive waste, China plans to establish an underground laboratory at buried depth of about 500 m in the granite rocks to carry out preliminary study on the disposal. However, as a common dynamic failure in deep rock engineering, rockburst always cause serious consequences. In the aim of guiding the selection of the underground laboratory site and the safe design and construction of the project, rockburst risks of shaft and tunnel excavation at different sites were predicted and analyzed based on support vector machine optimized by particle swarm optimization (PSO-SVM). One hundred groups of measured rockburst data as well as the geo-stress values and the mechanical parameters of rock mass of three candidate sites (Jiujing,Jijicao,and Xinchang) in Beishan pre-selected area were also taken as basis. Evaluation parameters including maximum tangential stress σθ of surrounding rock, uniaxial compressive strength σc,uniaxial tensile strengh σt,stress coefficient Ts, and brittleness coefficient B were chosen. Results show that PSO-SVM algorithm is feasible for rockburst prediction. The rockburst risk of engineering excavation in the depth of 300-600 m at Xinchang is the lowest. Therefore, selecting Xinchang as the construction site of underground laboratory for the disposal of high-level radioactive waste is the most secure.

关键词

高放废物处置 / PSO-SVM / 岩爆预测 / 北山预选区 / 地下实验室

Key words

disposal of high-level radioactive waste / PSO-SVM / rockburst prediction / Beishan pre-selected area / underground laboratory

引用本文

导出引用
仝跃, 陈亮, 黄宏伟. 基于PSO-SVM算法的高放废物处置北山预选区岩爆预测[J]. 长江科学院院报. 2017, 34(5): 68-74 https://doi.org/10.11988/ckyyb.20160058
TONG Yue, CHEN Liang, HUANG Hong-wei. Rockburst Prediction of Beishan Pre-selected Area for Disposal of High-level Radioactive Waste Based on PSO-SVM[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(5): 68-74 https://doi.org/10.11988/ckyyb.20160058
中图分类号: TU45   

参考文献

[1] 徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院院报,1999,16(4):24-27,38.
[2] 周青春,李海波,杨春和.地下工程岩爆及其风险评估综述[J].岩土力学,2003,24(增2):669-673.
[3] 汪 洋,尹健民,李永松,等.基于岩体开挖卸荷效应的岩爆机理研究[J].长江科学院院报,2014,31(11):120-124.
[4] 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):1-6.
[5] 冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
[6] 贾义鹏,吕 庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2): 343-348.
[7] 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报(自然科学版),2002,23(1):57-59.
[8] 言志信,贺 香,龚 斌.基于粒子群优化的PLS-LCF岩爆灾害预测模型研究[J].岩石力学与工程学报,2013,32(增2):3180-3186.
[9] ZHOU J,LI X,SHI X.Long-term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines[J]. Safety Science,2012,50(4):629-644.
[10] 谷文成,柴宝仁,滕艳平.基于粒子群优化算法的支持向量机研究[J].北京理工大学学报,2014,34(7):705-709.
[11] 王 驹.我国高放废物深地质处置战略规划探讨[J].铀矿地质,2004,20(4):196-204,212.
[12] 王 驹,陈伟明,苏 锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报,2006,25(4):801-812.
[13] 祝云华,刘新荣,周军平.基于 ν -SVR算法的岩爆预测分析[J].煤炭学报,2008,33(3):277-281.
[14] 何婷婷,尚岳全,吕 庆,等.边坡可靠度分析的支持向量机法[J].岩土力学,2013,34(11):3269-3276.
[15] 熊和金.智能信息处理[M].北京:国防工业出版社,2012:8.
[16] 李润求,施式亮,念其锋,等.基于PSO-SVM的煤矿瓦斯爆炸灾害风险模式识别[J].中国安全科学学报,2013,23(5):38-43.
[17] 张镜剑,傅冰骏.岩爆及其判据和防治[J].岩石力学与工程学报,2008,27(10):2034-2042.
[18] 贾义鹏,吕 庆,尚岳全,等.基于证据理论的岩爆预测[J].岩土工程学报,2014,36(6):1079-1086.
[19] 贾义鹏,吕 庆,尚岳全,等.基于粗糙集-理想点法的岩爆预测[J].浙江大学学报(工学版),2014,48(3):498-503.
[20] ADOKO A C,GOKCEOGLU C,WU L, et al . Knowledge-based and Data-driven Fuzzy Modeling for Rockburst Prediction[J]. International Journal of Rock Mechanics and Mining Sciences,2013,61(4):86-95.
[21] DONG L,LI X,PENG K.Prediction of Rockburst Classification Using Random Forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472-477.
[22] 核工业北京地质研究院.甘肃北山预选区BS15、BS16、BS17、BS18、BS19号钻孔地应力测量及分析[R].北京:核工业北京地质研究院,2012.
[23] 仝 跃,陈 亮,黄宏伟.高放废物地下实验室北山预选区岩爆风险预测[J].地下空间与工程学报,2016,12(4):1055-1063.
[24] 赵宏刚,王 驹,刘月妙,等.处置库硐室开挖稳定性分析——甘肃北山为例[C]∥中国岩石力学与工程学会废物地下处置专业委员会.第二届废物地下处置学术研讨会论文集.北京:中国岩石力学与工程学会,2008:295-304.
[25] 刘月妙,王 驹,谭国焕,等.高放废物处置北山预选区深部完整岩石基本物理力学性能及时温效应[J].岩石力学与工程学报,2007,26(10):2034-2042.
[26] 核工业北京地质研究院.甘肃北山花岗岩报告[R].北京:核工业北京地质研究院,2014.

基金

国家国防科技工业局项目

PDF(2413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/