河床式水电站混凝土蜗壳防渗措施研究

张志川,伍鹤皋,石长征

长江科学院院报 ›› 2016, Vol. 33 ›› Issue (12) : 128-132.

PDF(1126 KB)
PDF(1126 KB)
长江科学院院报 ›› 2016, Vol. 33 ›› Issue (12) : 128-132. DOI: 10.11988/ckyyb.20150772
水工结构与材料

河床式水电站混凝土蜗壳防渗措施研究

  • 张志川1,伍鹤皋2,石长征2
作者信息 +

Seepage Control Measures for Concrete Spiral Case of Hydropower Station in River Channel

  • ZHANG Zhi-chuan1,WU He-gao2,SHI Chang-zheng2
Author information +
文章历史 +

摘要

混凝土蜗壳结构在运行中承受复杂荷载作用时容易开裂,由于裂缝的产生,蜗壳防渗设计是一个需要重点关注的问题。鉴于混凝土蜗壳在中低水头甚至高水头电站中将得到更多的应用,而目前对混凝土蜗壳防渗问题的研究还不充分,结合某河床式水电站工程实际,运用三维非线性有限元方法对混凝土蜗壳的多种防渗方案进行了研究。研究表明:高强混凝土、钢纤维混凝土和环氧砂浆方案能解决混凝土蜗壳结构的限裂问题,但实践中有较大的局限性,而在蜗壳混凝土内表面设钢衬以及预应力加固方案的防渗效果较好,建议在实际工程中优先采用。

Abstract

Cracks are very likely to occur due to complex loads endured by concrete spiral case during the operation of hydropower station. Seepage control design is hence a big problem needs focus. Owing to insufficient research of seepage control at present and more applications of concrete spiral case in low and middle and even high head power stations in the future, some seepage control measures for concrete spiral case were analyzed by nonlinear finite element method with a hydropower station in river channel as the research background. The research results indicate that high strength concrete, steel fiber-reinforced concrete and epoxy mortar materials could solve the cracking problem for the concrete spiral case structure, but they have some limitations in practice. Steel liner coating on the inner wall of concrete spiral case and pre-stressed reinforcement have good effect in dealing with seepage problem and they are recommended to be preferentially used in practical projects.

关键词

混凝土蜗壳 / 非线性有限元 / 限裂 / 防渗措施 / 混凝土损伤

Key words

concrete spiral case / nonlinear finite element method / cracking restriction / seepage control measures / concrete damage

引用本文

导出引用
张志川,伍鹤皋,石长征. 河床式水电站混凝土蜗壳防渗措施研究[J]. 长江科学院院报. 2016, 33(12): 128-132 https://doi.org/10.11988/ckyyb.20150772
ZHANG Zhi-chuan,WU He-gao,SHI Chang-zheng. Seepage Control Measures for Concrete Spiral Case of Hydropower Station in River Channel[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(12): 128-132 https://doi.org/10.11988/ckyyb.20150772
中图分类号: TV43   

参考文献

[1] 伍鹤皋,马善定,秦继章.大型水电站蜗壳结构设计理论与工程实践[M]. 北京: 科学出版社, 2009.
[2] 王 琛,栾远新,马 军. 聚丙烯纤维材料在尼尔基水电站混凝土蜗壳中的应用[J]. 东北水利水电, 2005, 23(7): 1-3,10.
[3] 佚 名. 高坝洲水电站水轮机预应力钢筋混凝土蜗壳结构研究与运用[J]. 科技进步与对策, 2001,18(10):176.
[4] 徐麟祥, 陈麟灿. 高坝洲水电站设计概述[J]. 水力发电, 2002,(3):19-20,31.
[5] 张运雄, 周华文, 孙志恒,等. 新安江大坝溢流面弹性环氧砂浆现场试验[J]. 大坝与安全, 2006,(2): 31-34.
[6] LEE J, FENVES G L. Plastic-damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[7] 伍鹤皋, 田海平, 李永祖. 水电站混凝土蜗壳三维有限元分析[J]. 武汉大学学报(工学版), 2007, 40(5):53-57.
[8] 向功兴, 杨亚军, 伍鹤皋,等. 河床式厂房止水布置和混凝土蜗壳座环柔度[J]. 武汉大学学报(工学版), 2010, 43(1): 46-50.

基金

国家自然科学基金资助项目(51179141)

PDF(1126 KB)

Accesses

Citation

Detail

段落导航
相关文章

/