根据岩石亚临界裂缝扩展理论,筑坝堆石料中微裂缝的扩展导致了堆石颗粒的破碎。借鉴Oldecop和Alonso等提出的关于堆石料长期变形特性微观机理,分析了堆石裂缝的扩展规律,探讨裂缝面上的应力、颗粒及所含裂缝的几何特征、相对湿度等因素对应力强度因子、裂缝扩展规律的影响。研究表明初始裂缝长度与颗粒半径之比α和裂缝面上应力σ*i是影响裂缝扩展的主要因素,初始裂缝越长、裂缝面上应力越大,裂缝扩展至颗粒破碎的时间越短;较大的相对湿度环境可加速裂缝扩展的进程,但影响有限;α和σ*i在一定变化范围内,从加载到裂缝扩展至颗粒破碎的时间可以从1 min到上百年,说明堆石的颗粒破碎是不断发生的动态过程。
Abstract
According to the theory of subcritical expansion of cracks, we know that the breakage is caused by the extension of micro-cracks in rockfill particle. Based on the long-term deformation characteristics of rockfill particle proposed by predecessors, we study the influences on the stress intensity factor and extension of crack by discussing the stress on the crack surface, geometrical characters of particles and cracks, relative humidity, etc. The analysis results show that, ratio of the initial crack length to particle radius (α) and the stress (σ*i ) which acts across the surface of a crack, are the main influencing factors of crack expansion. The longer the length of initial crack is, the larger the stress on crack surface is, and the shorter the time from propagation till breakage of crack is. Big relative humidity is in favour of speeding crack propagation. However, the effect of relative humidity is limited when α and σ*i are large enough. The time interval from start of loading to particle breakage ranges from 1 minute to 100 years, which indicates that the particle breakage happens in the whole process of loading.
关键词
堆石料 /
亚临界裂缝扩展模型 /
颗粒破碎 /
应力强度因子 /
相对湿度
Key words
rockfill particle /
sub-critical model of crack expansion /
particle breakage /
stress intensity factor /
relative humidity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] OLDECOP L A, ALONSO E E. A Model for Rockfill Compressibility[J]. Geotechnique, 2001,51(2):127-139.
[2] OLDECOP L A, ALONSO E E. Theoretical Investigation of the Time-dependent Behaviour of Rockfill[J]. Geotechnique, 2007,57(5):423-435.
[3] 肖洪天,周维垣,杨若琼. 岩石裂纹流变扩展的细观机理分析[J]. 岩石力学与工程学报,1999,18(6):623-626.
[4] 肖洪天,周维垣,李白英. 岩石裂纹亚临界扩展机制及试验研究[J]. 工程力学,1999, (增刊):484-488.
[5] 袁海平,曹 平,周正义. 金川矿岩亚临界裂纹扩展试验研究[J]. 中南大学学报(自然科学版),2006, 37(2):381-384.
[6] 李江腾,曹 平,袁海平. 岩石亚临界裂纹扩展试验及门槛值研究[J]. 岩土工程学报,2006, 28(3):415-418.
[7] NARE Y, KANEKO K. Study of Subcritical Crack Growth in Andesite Using the Double Torsion test[J]. International Journal of Rock Mechanics and Mining Sciences, 2005,42:521-530.
[8] NARE Y, KANEKO K. Subcritical Crack Growth in Anisotropic Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 43(3):437-553.
[9] WILKINS B J S. Slow Crack Growth and Delayed Failure of Granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17:365-369.
[10]WIEDERHORN S. M, FULLER E R,THOMSON R. Micromechanisms of Crack Growth in Ceramics and Glasses in Corrosive Environments[J]. Metal Science, 1980, 14(8): 450-458.
[11]邵 磊,迟世春,王振兴. 基于裂缝扩展的堆石料流变细观模型[J]. 岩土工程学报,2013,35(1):66-75.
[12]邵 磊,迟世春. 堆石料单轴流变试验的颗粒流模拟[J]. 岩土力学, 2013, 34(5):1487-1500.
[13]BROEK D. Elementary Engineering Fracture Mechanics[M]. Dordrecht: Martinus Nijhoff,1986.
[14]TADA H, PARIS P,IRWIN G R. The Stress Analysis of Cracks Handbook[M]. 2nd ed. St Louis, MO: Paris Productions, 1985.
[15]曲 嘉. 钢纤维混凝土劈拉强度的实验研究[D]. 哈尔滨:哈尔滨工程大学,2010.
[16]CHARLES R J. Static Fatigue of Glass[J]. Journal of Applied Physics, 1958,29(11): 1549-1560.
[17]NAKAGAWA S,MYER L R. Mechanical and Acoustic Properties of Weakly Cemented Granular Rocks[C]∥ELSWORTH D, TINUCCI J P, HEASLEY K A. Proceedings of 38th U.S. Symposium on Rock Mechanics: Rock Mechanics in the National Interest. (Vol.1), Washington D.C.,USA, July 7-10,2001:3-10.
[18]ATKINSON B K. Subcritical Crack Growth in Geological Materials[J]. Journal of Geophysical Research, 1984,:4077-4114.
[19]ALONSO E E , OLDECOP L. Long Term Behaviour and Size Effects of Coarse Granular Media[M]. Mechanics of Natural Solids, 2009: 255-281.
基金
国家重点基础研究发展计划(973)项目(2013CB036400);国家自然科学基金项目(50879007,50979014,51179024)