TVD方法特别适合数值模拟双曲型偏微分方程间断波问题,选用4种典型的TVD格式应用于水击方程的数值模拟。通过水击实例计算,将数值结果与理论解比较,揭示4种不同构造形式的TVD格式在捕捉水击波方面耗散性和压制性数值性能的差异,且TVD格式均优于常规的差分方法;改变计算库朗数条件下的计算结果表明:Harten修正通量TVD格式、TVD-MC格式以及全离散TVD格式在大范围库朗数条件下计算稳定性较差,优选Sweby反扩散TVD格式模拟水击,其计算稳定性良好,精度较高。
Abstract
TVD method is especially suitable for the numerical simulation of discontinuous wave of hyperbolic partial differential equations. In this paper, four typical TVD schemes were presented for the numerical simulation of water hammer equations. Through comparison among example calculation, numerical results and theoretical solutions, the differences in numerical performances in aspects of the dissipative and compressible features of different types of TVD schemes were revealed, and TVD schemes were proved to be superior to conventional difference methods. Calculation results in the presence of varying Courant numbers showed that modified Harten’s TVD scheme, TVDMC scheme and full discrete TVD scheme have poor stability in the presence of a wide range of Courant numbers; whereas optimized Sweby’s TVD scheme for water hammer simulation has good stability and high precision.
关键词
高分辨率 /
TVD格式 /
数值模拟 /
库朗数 /
水击
Key words
high resolution /
TVD scheme /
numerical simulation /
Courant number /
water hammer
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HARTEN A. High Resolution Schemes for Hyperbolic Conservation Laws[J] .Journal of Computational Physics, 1983,(49): 357- 393.
[2] 练继建,王俊,万五一,等.变时步的特征线法计算复杂输水系统水力过渡过程[J] .水利水电技术,2003,34(9):12-14. (LIAN Ji-jian, WANG Jun, WAN Wu-yi, et al. Calculations of Hydraulic Transient for Complex Water Supply Systems by Using Characteristic Method with Variable Time Steps[J] . Water Resource and Hydropower Engineering, 2003, 34(9): 12-14. (in Chinese))
[3] ZHAO M, GHIDAOUI M. Godunov-type Solution for Water Hammer Flows[J] . Journal of hydraulic Engineering, 2004, 130(4): 8-314.
[4] 王嘉松,何友声,倪汉根.组合型总变差不增格式在溃坝流动计算中的比较[J] .上海交通大学学报,2000,(8):1040-1043.(WANG Jia-song,HE You-sheng,NI Han-gen.Comparative Study Using Hybrid Type of Total Variation Diminishing (TVD)Scheme for Computation of Dam-Break Flows[J] .Journal of Shanghai Jiaotong University,2000,(8):1040-1043.(in Chinese))
[5] BURGUETE B J, NAVARRO P G. Efficient Construction of High-resolution TVD Conservative Schemes for Equations with Source Terms: Application to Shallow Water Flows[J] . International Journal for Numerical Methods in Fluids, 2001, 37: 209-248.
[6] 涂国华,袁湘江,夏治强,等.一类TVD型的迎风紧致差分格式[J] .应用数学和力学,2006,27(6):675-682. (TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, et al. A Class of Compact Upwind TVD Difference Schemes[J] . Applied Mathematics and Mechanics, 2006, 27(6): 675-682. (in Chinese))
[7] WAHBA E M. Runge-Kutta Time-stepping Schemes with TVD Central Differencing for the Water Hammer Equations[J] . International Journal for Numerical Methods in Fluids, 2006, 52(5): 571-590.
[8] 刘韩生,樊书刚,张丹,等.TVD格式在水击数值模拟中的应用[J] .水力发电学报,2010,29(4):107-112. (LIU Han-sheng, FAN Shu-gang, ZHANG Dan, et al. Numerical Simulation of Water Hammer with TVD Scheme[J] . Journal of Hydroelectric Engineering, 2010, 29(4): 108-112. (in Chinese))
[9] 张丹,刘韩生,李顺兵,等.水击的数值模拟方法比较[J] .人民长江,2008,39(18):75-76. (ZHANG Dan, LIU Han-sheng, LI Shun-bing, et al. Comparison of Numerical Simulation Methods for Water-hammer[J] . Yangtze River, 2008, 39(18): 75-76. (in Chinese))
[10] 黄逸军,刘韩生.TVD格式在上游调压室水击数值模拟中的应用[J] .长江科学院报,2013,30(5):47-50. (HUANG Yi-jun, LIU Han-sheng. Numerical Simulation of Water Hammer with TVD Scheme in the Upstream Surge Chamber[J] . Journal of Yangtze River Scientific Research Institute, 2013, 30(5): 47-50. (in Chinese))
[11] SWEBY P K. High Resolution Scheme Using Flux Limiters for Hyperbolic Conservation Laws[J] . SIAM Journal on Numerical Analysis, 1984, 21(5): 995-1011.
[12] 徐旭,张振鹏.喷管内横流流场的数值模拟[J] .固体火箭技术,1997,20(4):12-17. (XU Xu, ZHANG Zhen-peng. Numerical Simulation of Cross-flow in Rocket Motor Nozzle[J] . Journal of Solid Rocket Technology, 1997, 20(4): 12-17. (in Chinese))