为研究石灰改良膨胀土的水稳定性,以某边坡弱膨胀土及石灰改良膨胀土为研究对象,进行了击实试验、无侧限抗压强度试验和压缩模量试验,并引用其他学者的相关土水特征曲线(SWCC)试验结果,分析了石灰改良膨胀土的水稳定特性。结果显示石灰改良膨胀土的可击实范围比素土宽,且最优含水率和最大干密度随掺灰率的增大分别线性增大和线性减小;石灰改良膨胀土经过1 d的吸湿后,无侧限抗压强度与压缩模量降低幅度最大,之后随着吸湿天数的增加,无侧限抗压强度和压缩模量降低的幅度逐渐减小,最终趋于稳定;经过1次干湿循环后,无侧限抗压强度降低幅度最大,之后随着干湿循环次数的增加,无侧限抗压强度降低幅度逐渐减小。试验后的石灰改良膨胀土强度及模量的衰减程度较素土有了较大幅度的降低,表明石灰改良土的水稳定性有了较大的改善。此外,SWCC的研究表明石灰改良膨胀土的水稳定性得到了较大幅度的提高。
Abstract
The water stability of lime-treated expansive soil is researched through compaction test, unconfined compression test and compression modulus test on weak expansive soil and lime-treated expansive soil in association with the test results of soil-water characteristic curve (SWCC) by other scholars. Results reveal that the compaction scope of lime-treated expansive soil is wider than that of natural expansive soil, and the optimum water content and the maximum dry density respectively increases and decreases linearly with the increment of lime content. The reduction of unconfined compressive strength and compression modulus of lime-treated expansive soil is the largest after one-day water absorption, and with the increase of water absorption time, the reduction rate gradually gets smaller and finally tends to be stable. Moreover, the reduction of unconfined compressive strength is up to maximum after 1 day’s wetting-drying cycle, and with the increasing of wetting-drying cycle, the reduction rate also decreases. The decreased margins of unconfined compressive strength and compression modulus of lime-treated expansive soil are remarkably smaller than that of natural expansive soil, indicating that the water stability of lime-treated expansive soil is greatly improved. In addition, researches of SWCC also show that the water stability of lime-treated expansive soil is improved.
关键词
石灰改良膨胀土 /
水稳定性 /
无侧限抗压强度 /
压缩模量 /
SWCC
Key words
lime-treated expansive soil /
water stability /
unconfined compressive strength /
compression modulus /
SWCC
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NARASIMHA J K, RAJASEKARAN G. Reaction Products Formed in Lime-Stabilized Marine Clays[J]. Journal of Geotechnical Engineering,ASCE,1996,122(5):329-336.
[2] 张文慧,王保田,张福海.改良膨胀土筑堤压实度控制标准研究[J].河海大学学报(自然科学版),2005,(3):198-201.
[3] 查甫生,刘松玉. 合安高速公路膨胀土掺石灰试验研究[J]. 公路交通科技,2006,23(1):36-39.
[4] 崔 伟,李华栾. 石灰改性膨胀土工程性质的试验研究[J]. 岩土力学,2003,24(8):606-609.
[5] 陈爱军,张家生. 石灰改良膨胀土无侧限抗压强度试验[J]. 桂林理工大学学报,2011,31(2):91-95.
[6] 杨明亮,陈善雄. 空军汉口新机场试验路段石灰改性膨胀土试验研究[J]. 岩石力学与工程学报,2006,25(9):1868-1875.
[7] 谭松林,黄 玲,李玉花. 加石灰改性后膨胀土的工程性质研究[J]. 工程地质学报,2009,24(4):421-425.
[8] 李志祥,胡瑞林,熊野生,等. 改性膨胀土路堤填筑含水率优化试验研究[J]. 工程地质学报,2005,13(1):113-116.
[9] 郭爱国,孔令伟,胡明鉴,等. 石灰改性膨胀土施工最佳含水率确定方法探讨[J]. 岩土力学,2007,28(3):517-521.
[10]边加敏,蒋 玲,王保田. 石灰改良膨胀土强度试验研究[J]. 长安大学学报(自然科学版),2013,33(2):38-43.
[11]周葆春,孔令伟,陈 伟,等. 荆门膨胀土土-水特征曲线参数分析与非饱和抗剪强度预测[J]. 岩石力学与工程学报,2010,29(5):1053-1059.
[12]FREDLUND D G. Unsaturated Soil Mechanics in Engineering Practice[J]. Journal of Geotechnical and Environmental Engineering,2006,132(3):286-321
基金
国家自然科学基金重点项目(506390101);教育部博士点基金项目(20100094110002);南京交通职业技术学院课题(JY1402,JY1507)